Refutational theorem proving for hierarchic first-order theories

1994 ◽  
Vol 5 (3-4) ◽  
pp. 193-212 ◽  
Author(s):  
Leo Bachmair ◽  
Harald Ganzinger ◽  
Uwe Waldmann
Keyword(s):  
1980 ◽  
Vol 3 (2) ◽  
pp. 235-268
Author(s):  
Ewa Orłowska

The central method employed today for theorem-proving is the resolution method introduced by J. A. Robinson in 1965 for the classical predicate calculus. Since then many improvements of the resolution method have been made. On the other hand, treatment of automated theorem-proving techniques for non-classical logics has been started, in connection with applications of these logics in computer science. In this paper a generalization of a notion of the resolution principle is introduced and discussed. A certain class of first order logics is considered and deductive systems of these logics with a resolution principle as an inference rule are investigated. The necessary and sufficient conditions for the so-called resolution completeness of such systems are given. A generalized Herbrand property for a logic is defined and its connections with the resolution-completeness are presented. A class of binary resolution systems is investigated and a kind of a normal form for derivations in such systems is given. On the ground of the methods developed the resolution system for the classical predicate calculus is described and the resolution systems for some non-classical logics are outlined. A method of program synthesis based on the resolution system for the classical predicate calculus is presented. A notion of a resolution-interpretability of a logic L in another logic L ′ is introduced. The method of resolution-interpretability consists in establishing a relation between formulas of the logic L and some sets of formulas of the logic L ′ with the intention of using the resolution system for L ′ to prove theorems of L. It is shown how the method of resolution-interpretability can be used to prove decidability of sets of unsatisfiable formulas of a given logic.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jie Zhang ◽  
Danwen Mao ◽  
Yong Guan

Theorem proving is an important approach in formal verification. Higher-order logic is a form of predicate logic that is distinguished from first-order logic by additional quantifiers and stronger semantics. Higher-order logic is more expressive. This paper presents the formalization of the linear space theory in HOL4. A set of properties is characterized in HOL4. This result is used to build the underpinnings for the application of higher-order logic in a wider spectrum of engineering applications.


10.29007/x9c9 ◽  
2018 ◽  
Author(s):  
Nik Sultana ◽  
Christoph Benzmüller

The LEO and LEO-II provers have pioneered the integration of higher-order and first-order automated theorem proving. To date, the LEO-II system is, to our knowledge, the only automated higher-order theorem prover which is capable of generating joint higher-order–first-order proof objects in TPTP format. This paper discusses LEO-II’s proof objects. The target audience are practitioners with an interest in using LEO-II proofs within other systems.


10.29007/s6d1 ◽  
2018 ◽  
Author(s):  
Giles Reger ◽  
Martin Suda

Inspired by the success of the DRAT proof format for certification of boolean satisfiability (SAT),we argue that a similar goal of having unified automatically checkable proofs should be soughtby the developers of automated first-order theorem provers (ATPs). This would not onlyhelp to further increase assurance about the correctness of prover results,but would also be indispensable for tools which rely on ATPs,such as ``hammers'' employed within interactive theorem provers.The current situation, represented by the TSTP format is unsatisfactory,because this format does not have a standardised semantics and thus cannot be checked automatically.Providing such semantics, however, is a challenging endeavour. One would ideallylike to have a proof format which covers only-satisfiability-preserving operations such as Skolemisationand is versatile enough to encompass various proving methods (i.e. not just superposition)or is perhaps even open ended towards yet to be conceived methods or at least easily extendable in principle.Going beyond pure first-order logic to theory reasoning in the style of SMT orbeyond proofs to certification of satisfiability are further interesting challenges.Although several projects have already provided partial solutions in this direction,we would like to use the opportunity of ARCADE to further promote the idea andgather critical mass needed for its satisfactory realisation.


Sign in / Sign up

Export Citation Format

Share Document