Synthesis and characterization of abrasion resistant coating materials prepared by the sol-gel approach: I. Coatings based on functionalized aliphatic diols and diethylenetriamine

1995 ◽  
Vol 5 (4) ◽  
pp. 343-375 ◽  
Author(s):  
J. Wen ◽  
G. L. Wilkes

Thermal barrier coating materials (TBC) are temperature resistance material which is applied to components in gas turbine or rocker engine in order to improve the life of the component. In this work, the lanthanum Zinc Aluminate are extracted in the form of powder and synthesized using the sol gel process. For sol gel process, Sample of different weight are taken and mixed with distilled water and these are prepared with a controlled stoichiometry by mixing of components. The powder which is obtained from the sol-gel process is to be characterized and the reported.


Author(s):  
Yusuf Olabode Raji ◽  
Mohd Hafiz Dzarfan Othman ◽  
Nik Abdul Hadi Sapiaa Md Nordin ◽  
Mohd Ridhwan Adam ◽  
Khairul Anwar Mohd Said ◽  
...  

2021 ◽  
Author(s):  
Nanda Saridewi ◽  
Heri T. Syaputro ◽  
Isalmi Aziz ◽  
Dasumiati Dasumiati ◽  
Biaunik N. Kumila

2009 ◽  
Vol 114 (1) ◽  
pp. 309-312 ◽  
Author(s):  
Qiang Liu ◽  
Jin Zhang ◽  
Qingju Liu ◽  
Zhongqi Zhu ◽  
Juan Chen

2002 ◽  
Vol 126 (2) ◽  
pp. 161-165 ◽  
Author(s):  
Junying Zhang ◽  
Zhongtai Zhang ◽  
Zilong Tang ◽  
Zishan Zheng ◽  
Yuanhua Lin

2014 ◽  
Vol 121 ◽  
pp. 20-29 ◽  
Author(s):  
Tim Van Gestel ◽  
Felix Hauler ◽  
Martin Bram ◽  
Wilhelm A. Meulenberg ◽  
Hans Peter Buchkremer

2003 ◽  
Vol 800 ◽  
Author(s):  
Brady J. Clapsaddle ◽  
Lihua Zhao ◽  
Alex E. Gash ◽  
Joe H. Satcher ◽  
Kenneth J. Shea ◽  
...  

ABSTRACTIn the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.


1991 ◽  
Vol 24 (6) ◽  
pp. 1431-1434 ◽  
Author(s):  
Timothy E. Long ◽  
Larry W. Kelts ◽  
S. Richard Turner ◽  
Jeffrey A. Wesson ◽  
Thomas H. Mourey

Sign in / Sign up

Export Citation Format

Share Document