gel method
Recently Published Documents





Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 71
Yuxin Chen ◽  
Dan Dang ◽  
Binhang Yan ◽  
Yi Cheng

Composite catalysts of mixed metal oxides were prepared by mixing a phase-pure M1 MoVNbTeOx with anatase-phase TiO2. Two methods were used to prepare the composite catalysts (the simple physically mixed or sol-gel method) for the improvement of the catalytic performance in the oxidative dehydrogenation of ethane (ODHE) process. The results showed that TiO2 particles with a smaller particle size were well dispersed on the M1 surface for the sol-gel method, which presented an excellent activity for ODHE. At the same operating condition (i.e., the contact time of 7.55 gcat·h/molC2H6 and the reaction temperature of 400 °C), the M1-TiO2-SM and M1-TiO2-PM achieved the space time yields of 0.67 and 0.52 kgC2H4/kgcat/h, respectively, which were about ~76% and ~35% more than that of M1 catalyst (0.38 kgC2H4/kgcat/h), respectively. The BET, ICP, XRD, TEM, SEM, H2-TPR, C2H6-TPSR, and XPS techniques were applied to characterize the catalysts. It was noted that the introduction of TiO2 raised the V5+ abundance on the catalyst surface as well as the reactivity of active oxygen species, which made contribution to the promotion of the catalytic performance. The surface morphology and crystal structure of used catalysts of either M1-TiO2-SM or M1-TiO2-PM remained stable as each fresh catalyst after 24 h time-on-stream tests.

2022 ◽  
Vol 6 (1) ◽  
pp. 4
Nataliia Hes ◽  
Artur Mylin ◽  
Svitlana Prudius

Catalytic conversion of fructose to levulinic and formic acids over tin-containing superacid (H0 = −14.52) mixed oxide was studied. Mesoporous ZrO2–SiO2–SnO2 (Zr:Si:Sn = 1:2:0.4) was synthesized by the sol–gel method. The fructose transformation was carried out in a rotated autoclave at 160–190 °C for 1–5 h using a 20 wt.% aqueous solution. The results showed that doping ZrO2–SiO2 samples with Sn4+ ions improved both fructose conversion and selectivity toward levulinic and formic acids. Under optimal conditions of 180 °C, 3.5 h and fructose to catalyst weight ratio 20:1, levulinic and formic acids yields were 80% and 90%, respectively, at complete fructose conversion. At this, humic substances formed in the quantity of 10 wt.% based on the target products.

2022 ◽  
Abdelaziz Abu El-fadl ◽  
Amna Eltokhey ◽  
A. A. Abu-Sehly ◽  
Amina A. Abozeed

Abstract In the present study, Fex/ZrO2 (0 ≤ x ≤ 25) nanoparticles were synthesized by a facile modified Sol-Gel method. Stabilization of the tetragonal phase of ZrO2 is studied as a function of both the Fe incorporation ratios and thermal treatment. The Fe incorporation ratios are tested up to the extreme just before FeO and Fe2O3 phases are formed separately. The prepared Fex/ZrO2 nanoparticles XRD analysis depicts the formation of zirconium oxide at different Fe ratios in the nanoscale with an excellent degree of crystallinity in the tetragonal phase. The effect of thermal treatment on stabilizing the tetragonal phase of Fex/ZrO2 nanoparticles is extensively studied. The phase transition to the monoclinic phase is determined as function of Fe incorporation ratios and annealing temperatures. The optical absorbance spectra showed that the optical band gap decreased with increasing Fe ratios without the formation of doping bands which confirms the formation of Fex/ZrO2 single matrix.

Oranich Thongsri ◽  
Sawitri Srisuwan ◽  
Paritat Thaitalay ◽  
Rawee Dangwiriyakul ◽  
Prasert Aengchuan ◽  

2022 ◽  
He Duan ◽  
Zhiyong Zhou ◽  
Yanming Zhao ◽  
Youzhong Dong

Single-phase magnesium molybdate, MgMoO4, is successfully synthesized by a facile sol-gel method. Attributed to the multielectron reaction and the synergistic effect of the elements molybdenum (Mo) and magnesium (Mg), the...

Mo Liu ◽  
Xiaoli Yang ◽  
ZiMeng Tian ◽  
Huimin Wang ◽  
Liangtao Yin ◽  

A series of LaCoO3 pervoskite catalysts substituted by Sr in A site (La1-xSrxCoO3) were prepared via a facile sol-gel method. The catalytic activity of these pervoskite catalysts for the deep...

Sign in / Sign up

Export Citation Format

Share Document