Separable torsion modules over valuation domains

1983 ◽  
Vol 41 (1) ◽  
pp. 17-24 ◽  
Author(s):  
L. Fuchs ◽  
L. Salce
2003 ◽  
Vol 68 (3) ◽  
pp. 439-447 ◽  
Author(s):  
Pudji Astuti ◽  
Harald K. Wimmer

A submodule W of a torsion module M over a discrete valuation domain is called stacked in M if there exists a basis ℬ of M such that multiples of elements of ℬ form a basis of W. We characterise those submodules which are stacked in a pure submodule of M.


2013 ◽  
Vol 55 (2) ◽  
pp. 369-380 ◽  
Author(s):  
RÜDIGER GÖBEL ◽  
SAHARON SHELAH ◽  
LUTZ STRÜNGMANN

AbstractA module M over a commutative ring R has an almost trivial dual if there is no homomorphism from M onto a free R-module of countable infinite rank. Using a new combinatorial principle (the ℵn-Black Box), which is provable in ordinary set theory, we show that for every natural number n, there exist arbitrarily large ℵn-free R-modules with almost trivial duals, when R is a complete discrete valuation domain. A corresponding result for torsion modules is also obtained.


2019 ◽  
Vol 79 (1) ◽  
pp. 120-133
Author(s):  
Luigi Salce
Keyword(s):  

1970 ◽  
Vol 11 (4) ◽  
pp. 490-498
Author(s):  
P. M. Cohn

Free ideal rings (or firs, cf. [2, 3] and § 2 below) form a noncommutative analogue of principal ideal domains, to which they reduce in the commutative case, and in [3] a category TR of right R-modules was defined, over any fir R, which forms an analogue of finitely generated torsion modules. The category TR was shown to be abelian, and all its objects have finite composition length; more over, the corresponding category RT of left R-modules is dual to TR.


1986 ◽  
Vol 39 ◽  
pp. 251-273 ◽  
Author(s):  
K.R. Goodearl ◽  
B. Zimmermann-Huisgen

2001 ◽  
Vol 243 (1) ◽  
pp. 294-320 ◽  
Author(s):  
S Bazzoni ◽  
L Salce

1994 ◽  
Vol 62 (3) ◽  
pp. 199-202 ◽  
Author(s):  
R�diger G�bel ◽  
Warren May
Keyword(s):  

2007 ◽  
Vol 06 (02) ◽  
pp. 337-353 ◽  
Author(s):  
MAHMOOD BEHBOODI

Let M be a left R-module. A proper submodule P of M is called classical prime if for all ideals [Formula: see text] and for all submodules N ⊆ M, [Formula: see text] implies that [Formula: see text] or [Formula: see text]. We generalize the Baer–McCoy radical (or classical prime radical) for a module [denoted by cl.rad R(M)] and Baer's lower nilradical for a module [denoted by Nil *(RM)]. For a module RM, cl.rad R(M) is defined to be the intersection of all classical prime submodules of M and Nil *(RM) is defined to be the set of all strongly nilpotent elements of M (defined later). It is shown that, for any projective R-module M, cl.rad R(M) = Nil *(RM) and, for any module M over a left Artinian ring R, cl.rad R(M) = Nil *(RM) = Rad (M) = Jac (R)M. In particular, if R is a commutative Noetherian domain with dim (R) ≤ 1, then for any module M, we have cl.rad R(M) = Nil *(RM). We show that over a left bounded prime left Goldie ring, the study of Baer–McCoy radicals of general modules reduces to that of torsion modules. Moreover, over an FBN prime ring R with dim (R) ≤ 1 (or over a commutative domain R with dim (R) ≤ 1), every semiprime submodule of any module is an intersection of classical prime submodules.


Sign in / Sign up

Export Citation Format

Share Document