scholarly journals Finite dimensional hereditary algebras of wild representation type

1978 ◽  
Vol 161 (3) ◽  
pp. 235-255 ◽  
Author(s):  
Claus Michael Ringel
2008 ◽  
Vol 07 (03) ◽  
pp. 379-392
Author(s):  
DIETER HAPPEL

For a finite dimensional hereditary algebra Λ local properties of the quiver [Formula: see text] of tilting modules are investigated. The existence of special neighbors of a given tilting module is shown. If Λ has more than 3 simple modules it is shown as an application that Λ is of wild representation type if and only if [Formula: see text] is a subquiver of [Formula: see text].


2018 ◽  
Vol 62 (1) ◽  
pp. 291-304
Author(s):  
Dave Benson ◽  
Zinovy Reichstein

AbstractWe examine situations, where representations of a finite-dimensionalF-algebraAdefined over a separable extension fieldK/F, have a unique minimal field of definition. Here the base fieldFis assumed to be a field of dimension ≼1. In particular,Fcould be a finite field ork(t) ork((t)), wherekis algebraically closed. We show that a unique minimal field of definition exists if (a)K/Fis an algebraic extension or (b)Ais of finite representation type. Moreover, in these situations the minimal field of definition is a finite extension ofF. This is not the case ifAis of infinite representation type orFfails to be of dimension ≼1. As a consequence, we compute the essential dimension of the functor of representations of a finite group, generalizing a theorem of Karpenko, Pevtsova and the second author.


1977 ◽  
Vol 29 (1) ◽  
pp. 220-223
Author(s):  
David Trushin

In this paper the representation type of the class of pointed irreducible coalgebras is studied. We refer the reader to [4] for the basic definitions. A coalgebra is of bounded representation type if there is a bound on the dimension of finite dimensional indecomposable comodules. In Section 1, we show that the representation type is dependent upon the size of the space of primitives. Indeed, a pointed irreducible coalgebra is of bounded type if and only if it is finite dimensional and the space of primitives is onedimensional, i.e. if and only if it is a coalgebra spanned by a finite sequence of divided powers.


1996 ◽  
Vol 39 (1) ◽  
pp. 111-114
Author(s):  
F. Okoh

AbstractIf R is a Dedekind domain, then div splits i.e.; the maximal divisible submodule of every R-module M is a direct summand of M. We investigate the status of this result for some finite-dimensional hereditary algebras. We use a torsion theory which permits the existence of torsion-free divisible modules for such algebras. Using this torsion theory we prove that the algebras obtained from extended Coxeter- Dynkin diagrams are the only such hereditary algebras for which div splits. The field of rational functions plays an essential role. The paper concludes with a new type of infinite-dimensional indecomposable module over a finite-dimensional wild hereditary algebra.


1987 ◽  
Vol 102 (3) ◽  
pp. 411-420 ◽  
Author(s):  
Aidan Schofield

In [1], Dowbor, Ringel and Simson consider hereditary artinian rings of finite representation type; it is known that if A is an hereditary artinian algebra of finite representation type, finite-dimensional over a field, then it corresponds to a Dynkin diagram in a natural way; they show that an hereditary artinian ring of finite representation type corresponds to a Coxeter diagram. However, in order to construct an hereditary artinian ring of finite representation type corresponding to a Coxeter diagram that is not Dynkin, they show that it is necessary though not sufficient to find an extension of skew fields such that the left and right dimensions are both finite but are different. No examples of such skew fields were known at the time. In [3], I constructed such extensions, and the main aim of this paper is to extend the methods of that paper to construct an extension of skew fields having all the properties needed to construct an hereditary artinian ring of finite representation type corresponding to the Coxeter diagram I2(5).


2020 ◽  
pp. 1-36
Author(s):  
O. MENDOZA ◽  
M. ORTÍZ ◽  
C. SÁENZ ◽  
V. SANTIAGO

Abstract We extend the classical notion of standardly stratified k-algebra (stated for finite dimensional k-algebras) to the more general class of rings, possibly without 1, with enough idempotents. We show that many of the fundamental results, which are known for classical standardly stratified algebras, can be generalized to this context. Furthermore, new classes of rings appear as: ideally standardly stratified and ideally quasi-hereditary. In the classical theory, it is known that quasi-hereditary and ideally quasi-hereditary algebras are equivalent notions, but in our general setting, this is no longer true. To develop the theory, we use the well-known connection between rings with enough idempotents and skeletally small categories (ringoids or rings with several objects).


Sign in / Sign up

Export Citation Format

Share Document