Representation type and stable equivalence of Morita type for finite dimensional algebras

1998 ◽  
Vol 229 (4) ◽  
pp. 601-606 ◽  
Author(s):  
Henning Krause
2010 ◽  
Vol 200 ◽  
pp. 107-152 ◽  
Author(s):  
Wei Hu ◽  
Changchang Xi

AbstractFor self-injective algebras, Rickard proved that each derived equivalence induces a stable equivalence of Morita type. For general algebras, it is unknown when a derived equivalence implies a stable equivalence of Morita type. In this article, we first show that each derived equivalenceFbetween the derived categories of Artin algebrasAandBarises naturally as a functorbetween their stable module categories, which can be used to compare certain homological dimensions ofAwith that ofB. We then give a sufficient condition for the functorto be an equivalence. Moreover, if we work with finite-dimensional algebras over a field, then the sufficient condition guarantees the existence of a stable equivalence of Morita type. In this way, we extend the classical result of Rickard. Furthermore, we provide several inductive methods for constructing those derived equivalences that induce stable equivalences of Morita type. It turns out that we may produce a lot of (usually not self-injective) finite-dimensional algebras that are both derived-equivalent and stably equivalent of Morita type; thus, they share many common invariants.


2010 ◽  
Vol 200 ◽  
pp. 107-152 ◽  
Author(s):  
Wei Hu ◽  
Changchang Xi

AbstractFor self-injective algebras, Rickard proved that each derived equivalence induces a stable equivalence of Morita type. For general algebras, it is unknown when a derived equivalence implies a stable equivalence of Morita type. In this article, we first show that each derived equivalence F between the derived categories of Artin algebras A and B arises naturally as a functor between their stable module categories, which can be used to compare certain homological dimensions of A with that of B. We then give a sufficient condition for the functor to be an equivalence. Moreover, if we work with finite-dimensional algebras over a field, then the sufficient condition guarantees the existence of a stable equivalence of Morita type. In this way, we extend the classical result of Rickard. Furthermore, we provide several inductive methods for constructing those derived equivalences that induce stable equivalences of Morita type. It turns out that we may produce a lot of (usually not self-injective) finite-dimensional algebras that are both derived-equivalent and stably equivalent of Morita type; thus, they share many common invariants.


2018 ◽  
Vol 17 (08) ◽  
pp. 1850157
Author(s):  
Alexander Zimmermann

For a symmetric algebra [Formula: see text] over a field [Formula: see text] of characteristic [Formula: see text] Külshammer constructed a descending sequence of ideals of the center of [Formula: see text]. If [Formula: see text] is perfect, this sequence was shown to be an invariant under derived equivalence and for algebraically closed [Formula: see text] the dimensions of their image in the stable center were shown to be invariant under stable equivalence of Morita type. Erdmann classified algebras of tame representation type which may be blocks of group algebras, and Holm classified Erdmann’s list up to derived equivalence. In both classifications, certain parameters occur in the classification, and it was unclear if different parameters lead to different algebras. Erdmann’s algebras fall into three classes, namely of dihedral, semidihedral and of quaternion type. In previous joint work with Holm, we used Külshammer ideals to distinguish classes with respect to these parameters in case of algebras of dihedral and semidihedral type. In the present paper, we determine the Külshammer ideals for algebras of quaternion type and distinguish again algebras with respect to certain parameters.


2013 ◽  
Vol 2015 (3) ◽  
pp. 631-650 ◽  
Author(s):  
Calin Chindris ◽  
Ryan Kinser ◽  
Jerzy Weyman

2004 ◽  
Vol 47 (3) ◽  
pp. 669-678 ◽  
Author(s):  
Volodymyr Mazorchuk ◽  
Lyudmila Turowska

AbstractWe determine when the $*$-double of a finite-dimensional complex algebra is $*$-finite, $*$-tame and $*$-wild.AMS 2000 Mathematics subject classification: Primary 46K10; 16G60


1982 ◽  
Vol 47 (4) ◽  
pp. 734-738
Author(s):  
Bruce I. Rose

In this note we show that taking a scalar extension of two elementarily equivalent finite-dimensional algebras over the same field preserves elementary equivalence. The general question of whether or not tensor product preserves elementary equivalence was originally raised in [4]. In [3] Feferman relates an example of Ersov which answers the question negatively. Eklof and Olin [7] also provide a counterexample to the general question in the context of two-sorted structures. Thus the result proved below is a partial positive answer to a general question whose status has been resolved negatively. From the viewpoint of applied model theory it seems desirable to find contexts in which positive statements of preservation can be obtained. Our result does have an application; a corollary to it increases our understanding of what it means for two division algebras to be elementarily equivalent.All algebras are finite-dimensional algebras over fields. All algebras contain an identity element, but are not necessarily associative.Recall that the center of a not necessarily associative algebra A is the set of elements which commute and “associate” with all elements of A. The notion of a scalar extension is an important one in algebra. If A is an algebra over F and G is an extension field of F, then the scalar extension of A by G is the algebra A ⊗F G.


Sign in / Sign up

Export Citation Format

Share Document