The orthogonal group over a local ring is 4-reflectional

1994 ◽  
Vol 49 (3) ◽  
pp. 369-373 ◽  
Author(s):  
Hans R�pcke
Keyword(s):  
1981 ◽  
Vol 33 (1) ◽  
pp. 116-128 ◽  
Author(s):  
Hiroyuki Ishibashi

Let be a valuation ring with unit element, i.e., is a commutative ring such that for any a and b in , either a divides b or b divides a. We assume 2 is a unit of . V is an n-ary nonsingular quadratic module over , O(V) or On(V) is the orthogonal group on V, and S is the set of symmetries in O(V). We define l(σ) to be the minimal number of factors in the expression of a of O(V) as a product of symmetries on V. For the case where is a field, l(σ) has been determined by P. Scherk [6] and J. Dieudonné [1]. In [3] I have generalized the results of Scherk to orthogonal groups over valuation domains. In the present paper I generalize my results of [3] to orthogonal groups over valuation rings.Since is a valuation ring, it is a local ring with the maximal ideal A which consists of all nonunits of .


2015 ◽  
Vol 3 (1) ◽  
pp. 145-152
Author(s):  
Zubayda Ibraheem ◽  
Naeema Shereef

2019 ◽  
Vol 19 (04) ◽  
pp. 2050061
Author(s):  
Lorenzo Guerrieri

Let [Formula: see text] be a regular local ring of dimension [Formula: see text]. A local monoidal transform of [Formula: see text] is a ring of the form [Formula: see text], where [Formula: see text] is a regular parameter, [Formula: see text] is a regular prime ideal of [Formula: see text] and [Formula: see text] is a maximal ideal of [Formula: see text] lying over [Formula: see text] In this paper, we study some features of the rings [Formula: see text] obtained as infinite directed union of iterated local monoidal transforms of [Formula: see text]. In order to study when these rings are GCD domains, we also provide results in the more general setting of directed unions of GCD domains.


1982 ◽  
Vol 91 (2) ◽  
pp. 207-213 ◽  
Author(s):  
M. Herrmann ◽  
U. Orbanz

This note consists of some investigations about the condition ht(A) = l(A) where A is an ideal in a local ring and l(A) is the analytic spread of A (9).In (4) we proved the following: If R is a local ring and P a prime ideal such that R/P is regular then (under some technical assumptions) ht(P) = l(P) is equivalent to the equimultiplicity e(R) = e(RP). Also for a general ideal A (which need not be prime), the condition ht(A) = l(A) can be translated into an equality of certain multiplicities (see Theorem 0).


Author(s):  
Martin Olsson

Abstract We prove versions of various classical results on specialisation of fundamental groups in the context of log schemes in the sense of Fontaine and Illusie, generalising earlier results of Hoshi, Lepage and Orgogozo. The key technical result relates the category of finite Kummer étale covers of an fs log scheme over a complete Noetherian local ring to the Kummer étale coverings of its reduction.


2014 ◽  
Vol 26 (06) ◽  
pp. 1450009
Author(s):  
Joachim Kupsch

Canonical transformations (Bogoliubov transformations) for fermions with an infinite number of degrees of freedom are studied within a calculus of superanalysis. A continuous representation of the orthogonal group is constructed on a Grassmann module extension of the Fock space. The pull-back of these operators to the Fock space yields a unitary ray representation of the group that implements the Bogoliubov transformations.


2011 ◽  
Vol 85 (1) ◽  
pp. 19-25
Author(s):  
YIN CHEN

AbstractLet Fq be a finite field with q elements, V an n-dimensional vector space over Fq and 𝒱 the projective space associated to V. Let G≤GLn(Fq) be a classical group and PG be the corresponding projective group. In this note we prove that if Fq (V )G is purely transcendental over Fq with homogeneous polynomial generators, then Fq (𝒱)PG is also purely transcendental over Fq. We compute explicitly the generators of Fq (𝒱)PG when G is the symplectic, unitary or orthogonal group.


2016 ◽  
Vol 15 (08) ◽  
pp. 1650150 ◽  
Author(s):  
Hongdi Huang ◽  
Yuanlin Li ◽  
Gaohua Tang

A ring with involution ∗ is called ∗-clean if each of its elements is the sum of a unit and a projection (∗-invariant idempotent). In this paper, we consider the group algebras of the dihedral groups [Formula: see text], and the generalized quaternion groups [Formula: see text] with standard involution ∗. For the non-semisimple group algebra case, we characterize the ∗-cleanness of [Formula: see text] with a prime [Formula: see text], and [Formula: see text] with [Formula: see text], where [Formula: see text] is a commutative local ring. For the semisimple group algebra case, we investigate when [Formula: see text] is ∗-clean, where [Formula: see text] is the field of rational numbers [Formula: see text] or a finite field [Formula: see text] and [Formula: see text] or [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document