Residues of regular and meromorphic differential forms

1994 ◽  
Vol 300 (1) ◽  
pp. 605-628 ◽  
Author(s):  
Reinhold H�bl
Author(s):  
Shinichi Tajima ◽  
◽  
Katsusuke Nabeshima ◽  

Logarithmic differential forms and logarithmic vector fields associated to a hypersurface with an isolated singularity are considered in the context of computational complex analysis. As applications, based on the concept of torsion differential forms due to A.G. Aleksandrov, regular meromorphic differential forms introduced by D. Barlet and M. Kersken, and Brieskorn formulae on Gauss-Manin connections are investigated. (i) A method is given to describe singular parts of regular meromorphic differential forms in terms of non-trivial logarithmic vector fields via Saito's logarithmic residues. The resulting algorithm is illustrated by using examples. (ii) A new link between Brieskorn formulae and logarithmic vector fields is discovered and an expression that rewrites Brieskorn formulae in terms of non-trivial logarithmic vector fields is presented. A new effective method is described to compute non trivial logarithmic vector fields which are suitable for the computation of Gauss-Manin connections. Some examples are given for illustration.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Nikhil Kalyanapuram

Abstract We combine the technology of the theory of polytopes and twisted intersection theory to derive a large class of double copy relations that generalize the classical relations due to Kawai, Lewellen and Tye (KLT). To do this, we first study a generalization of the scattering equations of Cachazo, He and Yuan. While the scattering equations were defined on ℳ0, n — the moduli space of marked Riemann spheres — the new scattering equations are defined on polytopes known as accordiohedra, realized as hyperplane arrangements. These polytopes encode as patterns of intersection the scattering amplitudes of generic scalar theories. The twisted period relations of such intersection numbers provide a vast generalization of the KLT relations. Differential forms dual to the bounded chambers of the hyperplane arrangements furnish a natural generalization of the Bern-Carrasco-Johansson (BCJ) basis, the number of which can be determined by counting the number of solutions of the generalized scattering equations. In this work the focus is on a generalization of the BCJ expansion to generic scalar theories, although we use the labels KLT and BCJ interchangeably.


1986 ◽  
Vol 41 (2) ◽  
pp. 205-206
Author(s):  
M I Kuznetsov ◽  
S A Kirillov

1984 ◽  
Vol 7 (3) ◽  
pp. 591-597 ◽  
Author(s):  
P. Dolan ◽  
A. C. Zenios

Our work depends essentially on the notion of a one-particle seven-dimensional state-space. In constructing a general relativistic theory we assume that all measurable quantities arise from invariant differential forms. In this paper, we study only the case when instantaneous, binary, elastic collisions occur between the particles of the gas. With a simple model for colliding particles and their collisions, we derive the kinetic equation, which gives the change of the distribution function along flows in state-space.


Sign in / Sign up

Export Citation Format

Share Document