kinetic equation
Recently Published Documents


TOTAL DOCUMENTS

1443
(FIVE YEARS 186)

H-INDEX

54
(FIVE YEARS 4)

Author(s):  
Vladimir Kolobov ◽  
Juan Alonso Guzmán ◽  
R R Arslanbekov

Abstract A self-consistent hybrid model of standing and moving striations was developed for low-current DC discharges in noble gases. We introduced the concept of surface diffusion in phase space (r,u) (where u denotes the electron kinetic energy) described by a tensor diffusion in the nonlocal Fokker-Planck kinetic equation for electrons in the collisional plasma. Electrons diffuse along surfaces of constant total energy ε=u-eφ(r) between energy jumps in inelastic collisions with atoms. Numerical solutions of the 1d1u kinetic equation for electrons were obtained by two methods and coupled to ion transport and Poisson solver. We studied the dynamics of striation formation in Townsend and glow discharges in Argon gas at low discharge currents using a two-level excitation-ionization model and a “full-chemistry” model, which includes stepwise and Penning ionization. Standing striations appeared in Townsend and glow discharges at low currents, and moving striations were obtained for the discharge currents exceeding a critical value. These waves originate at the anode and propagate towards the cathode. We have seen two types of moving striations with the 2-level and full-chemistry models, which resemble the s and p striations previously observed in the experiments. Simulations indicate that processes in the anode region could control moving striations in the positive column plasma. The developed model helps clarify the nature of standing and moving striations in DC discharges of noble gases at low discharge currents and low gas pressures.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 34
Author(s):  
Yiqi Jing ◽  
Yongliang Lai ◽  
Shujia Zhang ◽  
Ruijuan Wang ◽  
Zhuohui Xu ◽  
...  

Polyaniline/Zinc oxide (PANI/ZnO) were prepared using a two-step method, and the morphology and the structure of PANI/ZnO composites were characterized through a scanning electron microscope (SEM) and X-ray diffraction (XRD). Factors such as the content of ZnO, the adsorption time and the mass of the adsorbent, and the kinetic equation of PANI/ZnO as adsorbents for the adsorption of methyl orange solution were studied. The results showed that the adsorption efficiency of methyl orange by polyaniline with the increase of adsorbent mass firstly increased and then decreased. Among the composites with the same quality, PANI composites with 8% ZnO have a better adsorption effect for methyl orange, and the maximum adsorption ratio can reach 69% with the increase of adsorption time at 0.033 g; With the increase of adsorbent mass, the adsorption efficiency of PANI composites with 8% ZnO increased continuously. When the mass increased from 0.033 g to 0.132 g, the adsorption rate increased from 69% to 93%, and the adsorption of the methyl orange solution by PANI/ZnO composites was more in line with the quasi-second-order kinetic equation.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 34
Author(s):  
Vladimir A. Karelin ◽  
Son Hai Le ◽  
Nadezhda V. Karelina ◽  
Alexander N. Strashko ◽  
Alexander V. Sazonov ◽  
...  

The growth in the production of titanium metal and its compounds leads to an increase in the amount of toxic waste. As a result, at the legislative level, emissions of such wastes are limited, which leads to a drop in the production of titanium-containing products and a shortage of titanium in the international market. This paper presents the results of the process of fluorination of rutile concentrate from the Tarsky deposit (Russia, Omsk region) with elemental fluorine using a laboratory setup of a special design. For fluorination, samples of rutile concentrate weighing 0.1–1.0 g were used. The particle size distribution of particles varied from 2 × 10−6 to 2 × 10−5 m. To determine the possibility of carrying out the process, the calculation of the change in the logarithm of the equilibrium constant versus temperature was performed. The influence of the following operating parameters on the fluorination process has been studied: various concentrations of F2 in a fluorinating mixture of fluorine with nitrogen; process time from 0 to 9 min; different ratios of the initial solid phase to fluorine (10 and 50% excess of fluorine and 10 and 50% of its deficiency); fluorination temperature in the range of 300–1800 K. A kinetic equation is selected that most accurately describes the fluorination process. The values of the activation energy and the preexponential factor in the kinetic equation are determined. The obtained results show that with an increase in the fluorine content in the fluorinating gas mixture and the temperature of the process, the fluorination rate increases. Optimal conditions for fluorination: temperature—680 K; time—5 min excess fluorine in the fluorinating mixture—20–25%. The obtained results allow to propose and consider the conditions of process execution on industrial equipment.


Author(s):  
Ирина Сергеевна Медянкина ◽  
Владимир Михайлович Скачков ◽  
Лилия Александровна Пасечник

Предложен способ получения высокодисперсного аморфного кремнезема из отходов обогащения низкотитанистых ванадий содержащих титаномагнетитов АО «ЕВРАЗ Качканарский ГОК» - хвостов мокрой магнитной сепарации. Применение раствора гидрофторида аммония ( NHHF) позволяет практически селективно извлечь кремний в раствор в виде гексафторосиликата аммония. Степень извлечения кремния раствором 1,0 - 2,5 мас.% NHHF за 6 часов составляет 46%. Диффузионный процесс выщелачивания кремния из ХММС описывается кинетическим уравнением 1 -(1 -а) = 0,0043• exp(-5230/RT)-г . Аморфный кремнезем SiO, полученный золь- гель методом из фторидного кремнийсодержащего раствора, имеет высокоразвитую поверхность S = 320 м/г, рассчитанный из средней плотности «белой сажи» размер частиц составляет d = 10 нм. Увеличение концентрации NHHF до 20 мас.% приводит к повышению растворимости кремния, а также других компонентов хвостов мокрой магнитной сепарации, которые являются нежелательными примесями в конечном продукте SiO. В целом показана перспективность гидрохимического выщелачивания кремнийсодержащих промышленных отходов - хвостов мокрой магнитной сепарации слабыми растворами гидрофторида аммония для синтеза чистого аморфного SiO. A method for producing amorphous silica from the enrichment wastes of low-titanium vanadium containing titanomagnetites of JSC «EVRAZ ZSMK» - wet magnetic separation tailings is proposed. The use of a NHHF solution makes it possible to practically selectively extract silicon into the solution in the form of ammonium hexafluorosilicate. The extraction of silicon with 1,0 - 2,5 wt.% NHHF solution for 6 hours reached 46%. The diffusion process of the silicon extraction is described by the kinetic equation 1 - (1 - a) = 0,0043 • exp(-5230 / RT)• t . Amorphous silica obtained by the sol-gel method from a fluoride silicon-containing solution has a highly developed surface 320 m/g, the particle size calculated from the average density of «white carbon black» is of 10 nm. The increase in concentration to 20 wt. % NHHF leads to the rise of the silicon solubility and of other tailings components, which are unwanted impurities in the final product. In general, it is shown that the hydrochemical leaching of silicon-containing industrial waste - tailings with weak solutions of ammonium hydrofluoride is promising for the synthesis of pure amorphous silica.


Author(s):  
Xilin Li ◽  
Qi Wang ◽  
Ling Liu ◽  
Siyuan Liu

Abstract To solve the problem of high fluoride, iron and manganese concentrations in groundwater, serpentine (Srp) was modified by metal salt impregnation, acid-base activation and calcination, and the effects of these three modifications on removal performance of Srp were compared. Specifically, the effects of the calcined serpentine (Csrp) dose, reaction time, pH, and temperature on the removal performance of F−, Fe2+ and Mn2+ on Csrp were analysed. An isothermal adsorption model and adsorption kinetic equation were established and confirmed through SEM, EDS, XRD and FTIR spectroscopy to analyse the mechanism of removing F−, Fe2+ and Mn2+ by Csrp. The results show that when 3 g/L Csrp was used to treat water samples with 5 mg/L F−, 20 mg/L Fe2+, and 5 mg/L Mn2+ (pH of 6, reaction temperature of 35 °C, and time of 150 min), the removal rates of F−, Fe2+, and Mn2+ were 94.3%, 99.0%, 98.9%, respectively. The adsorption of F−, Fe2+ and Mn2+ on Csrp follows the quasi-second-order kinetic equation and Langmuir isotherm adsorption model. After 5 cycles of regeneration of Csrp, Csrp can still maintain good properties of fluoride,iron and manganese removal.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4383
Author(s):  
Michelle Spanjaards ◽  
Gerrit Peters ◽  
Martien Hulsen ◽  
Patrick Anderson

The extrusion of highly filled elastomers is widely used in the automotive industry. In this paper, we numerically study the effect of thixotropy on 2D planar extrudate swell for constant and fluctuating flow rates, as well as the effect of thixotropy on the swell behavior of a 3D rectangular extrudate for a constant flowrate. To this end, we used the Finite Element Method. The state of the network structure in the material is described using a kinetic equation for a structure parameter. Rate and stress-controlled models for this kinetic equation are compared. The effect of thixotropy on extrudate swell is studied by varying the damage and recovery parameters in these models. It was found that thixotropy in general decreases extrudate swell. The stress-controlled approach always predicts a larger swell ratio compared to the rate-controlled approach for the Weissenberg numbers studied in this work. When the damage parameter in the models is increased, a less viscous fluid layer appears near the die wall, which decreases the swell ratio to a value lower than the Newtonian swell ratio. Upon further increasing the damage parameter, the high viscosity core layer becomes very small, leading to an increase in the swell ratio compared to smaller damage parameters, approaching the Newtonian value. The existence of a low-viscosity outer layer and a high-viscosity core in the die have a pronounced effect on the swell ratio for thixotropic fluids.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3219
Author(s):  
Viacheslav V. Saenko ◽  
Vladislav N. Kovalnogov ◽  
Ruslan V. Fedorov ◽  
Yuri E. Chamchiyan

The process of Levy random walks is considered in view of the constant velocity of a particle. A kinetic equation is obtained that describes the process of walks, and fractional differential equations are obtained that describe the asymptotic behavior of the process. It is shown that, in the case of finite and infinite mathematical expectation of paths, these equations have a completely different form. To solve the obtained equations, the method of local estimation of the Monte Carlo method is described. The solution algorithm is described and the advantages and disadvantages of the considered method are indicated.


2021 ◽  
Vol 9 (12) ◽  
pp. 1422
Author(s):  
Elena Tobisch ◽  
Alexey Kartashov

The problem of spectral description of the nonlinear capillary waves on the fluid surface is discussed. Usually, three-wave nonlinear interactions are considered as a major factor determined by the energy spectrum of these waves in the kinetic wave turbulent regime. We demonstrate that four-wave interactions should be taken into account. In this case, there are two possible scenarios for the transfer of energy over the wave spectrum: kinetic and dynamic. The first is described by the averaged stochastic interaction of waves using the kinetic equation, while the second is described by dynamic equations written for discrete modes. In this article, we compare the time scales, spectral shapes, and other properties of both energy cascades, allowing them to be identified in an experiment.


Sign in / Sign up

Export Citation Format

Share Document