scholarly journals Flash photolysis of flavins. IV. Some properties of the lumiflavin triplet state

1970 ◽  
Vol 1 (2) ◽  
pp. 181-192 ◽  
Author(s):  
Shiv P. Vaish ◽  
Gordon Tollin
2002 ◽  
Vol 76 (5) ◽  
pp. 480 ◽  
Author(s):  
Xavier Damoiseau ◽  
Francis Tfibel ◽  
Maryse Hoebeke ◽  
Marie-Pierre Fontaine-Aupart

The kinetics and mechanism of the reaction between anthracene and styrene have been fully investigated. By means of flash photolysis techniques, it has been confirmed that it is the triplet state of anthracene which sensitizes the polymerization. It has also been shown that both triplet and unexcited singlet anthracene copolymerize with styrene, the former with a zero activation energy. The work has been extended to the polymerizations sensitized by pyrene and chrysene, and to the unsensitized photopolymerization of styrene. It has been shown that in every case an initiation mechanism, involving the initial formation of a triplet-monomer complex, satisfactorily explains the observed results. The copolymerization rates of pyrene and chrysene were undetectable; these results, coupled with those obtained for the copolymerization of anthracene with styrene, are in agreement with the conclusions of Kooyman & Farenhorst, Szwarc, and others, concerning the reactivity of olefinic and aromatic hydrocarbons to radical addition. Finally, a qualitative investigation of the photochemical reactions between the sensitizers, and cumene and 9 .10-dihydroanthracene, has been made.


2015 ◽  
Vol 14 (2) ◽  
pp. 407-413 ◽  
Author(s):  
Martín F. Broglia ◽  
Carlos M. Previtali ◽  
Sonia G. Bertolotti

The interaction of the triplet state of the synthetic dye phenosafranine (3,7-diamino-5-phenylphenazinium chloride) with indolic compounds of biological relevance was investigated in water by means of laser flash photolysis.


1988 ◽  
Vol 66 (10) ◽  
pp. 2595-2600 ◽  
Author(s):  
D. Weir ◽  
J. C. Scaiano ◽  
D. I. Schuster

Laser flash photolysis studies lead to the conclusion that the short-lived triplet states of cyclohexenones are readily quenched by amines. For example, in the case of 2-cyclohexen-1-one (1) its triplet state (τT = 40 ns in acetonitrile) is quenched by triethylamine with a rate constant of (9.0 ± 0.8) × 107 M−1 s−1. Cyclohexenone triplets are also quenched efficiently by DABCO and by triphenylamine leading to the formation of the corresponding amine radical cations. The new evidence reported rules out the involvement of long-lived detectable exciplexes.


Sign in / Sign up

Export Citation Format

Share Document