rose bengal
Recently Published Documents


TOTAL DOCUMENTS

1349
(FIVE YEARS 254)

H-INDEX

60
(FIVE YEARS 9)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 569
Author(s):  
Oleg E. Polozhentsev ◽  
Ilia A. Pankin ◽  
Darya V. Khodakova ◽  
Pavel V. Medvedev ◽  
Anna S. Goncharova ◽  
...  

Herein we report the development of a nanocomposite for X-ray-induced photodynamic therapy (X-PDT) and computed tomography (CT) based on PEG-capped GdF3:Tb3+ scintillating nanoparticles conjugated with Rose Bengal photosensitizer via electrostatic interactions. Scintillating GdF3:Tb3+ nanoparticles were synthesized by a facile and cost-effective wet chemical precipitation method. All synthesized nanoparticles had an elongated “spindle-like” clustered morphology with an orthorhombic structure. The structure, particle size, and morphology were determined by transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) analysis. The presence of a polyethylene glycol (PEG) coating and Rose Bengal conjugates was proved by Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), and ultraviolet–visible (UV-vis) analysis. Upon X-ray irradiation of the colloidal PEG-capped GdF3:Tb3+–Rose Bengal nanocomposite solution, an efficient fluorescent resonant energy transfer between scintillating nanoparticles and Rose Bengal was detected. The biodistribution of the synthesized nanoparticles in mice after intravenous administration was studied by in vivo CT imaging.


Microbiology ◽  
2022 ◽  
Vol 168 (1) ◽  
Author(s):  
Minghui Zhou ◽  
Yan Zhang ◽  
Yajun Chen ◽  
Fangyan Zhang ◽  
Daihu Yang

Aspergillus niger TF05 was applied to decolorize Rose Bengal dye. The effects of carbon source, nitrogen source, metal ion and spore concentration on Rose Bengal treatment with A. niger TF05 were studied. A Plackett–Burman design (PBD) and a uniform design (UD) were used to optimize the decolorization conditions of A. niger TF05 and enhance its decolorization effect. The mechanism of Rose Bengal decolorization by A. niger TF05 was examined by analysing degradation products via UV–visible light spectroscopy, IR spectroscopy and GC-MS. The best decolorization effect was achieved in the single factor test with glucose and ammonium chloride as carbon and nitrogen sources, respectively. Mg2+ was an essential ion that could improve the mould ball state and adsorption efficiency if the spore concentration was maintained at 106 spores ml–1. The optimal decolorization conditions obtained using the PBD and UD methods were 11.5 g l−1 glucose, 6.5 g l−1 ammonium chloride, 0.4 g l−1 magnesium sulphate, pH 5.8, 28 °C, 140 r.p.m. rotational speed, 0.18 g l−1 dye concentration, 0.5 ml of inocula and 120 h decolorization time. Under these conditions, the maximum decolorization rate was 106%. Spectral analysis suggested that the absorption peak of the product changed clearly after decolorization; GC-MS analysis revealed that the intermediate product tetrachlorophthalic anhydride formed after decolorization. The combined use of the PBD and UD methods can optimize multi-factor experiments. A. niger TF05 decolorized Rose Bengal during intracellular enzymatic degradation after adsorption.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 322
Author(s):  
Michio Kurosu ◽  
Katsuhiko Mitachi ◽  
Junshu Yang ◽  
Edward V. Pershing ◽  
Bruce D. Horowitz ◽  
...  

Rose bengal has been used in the diagnosis of ophthalmic disorders and liver function, and has been studied for the treatment of solid tumor cancers. To date, the antibacterial activity of rose bengal has been sporadically reported; however, these data have been generated with a commercial grade of rose bengal, which contains major uncontrolled impurities generated by the manufacturing process (80–95% dye content). A high-purity form of rose bengal formulation (HP-RBf, >99.5% dye content) kills a battery of Gram-positive bacteria, including drug-resistant strains at low concentrations (0.01–3.13 μg/mL) under fluorescent, LED, and natural light in a few minutes. Significantly, HP-RBf effectively eradicates Gram-positive bacterial biofilms. The frequency that Gram-positive bacteria spontaneously developed resistance to HP-RB is extremely low (less than 1 × 10−13). Toxicity data obtained through our research programs indicate that HP-RB is feasible as an anti-infective drug for the treatment of skin and soft tissue infections (SSTIs) involving multidrug-resistant (MDR) microbial invasion of the skin, and for eradicating biofilms. This article summarizes the antibacterial activity of pharmaceutical-grade rose bengal, HP-RB, against Gram-positive bacteria, its cytotoxicity against skin cells under illumination conditions, and mechanistic insights into rose bengal’s bactericidal activity under dark conditions.


2021 ◽  
Vol 332 ◽  
pp. 113055
Author(s):  
A.A. Salim ◽  
S.K. Ghoshal ◽  
M.S. Shamsudin ◽  
Muhammad Izz Rosli ◽  
M.S. Aziz ◽  
...  
Keyword(s):  

2021 ◽  
Vol Volume 15 ◽  
pp. 5011-5023
Author(s):  
Abdullah I El-Kholy ◽  
Doaa Abdel Fadeel ◽  
Maha Nasr ◽  
Maha Fadel ◽  
Ibrahim El-Sherbiny

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2011
Author(s):  
Jia-Horung Hung ◽  
Chaw-Ning Lee ◽  
Huai-Wen Hsu ◽  
I-Son Ng ◽  
Chi-Jung Wu ◽  
...  

Fungal keratitis is a serious clinical infection on the cornea caused by fungi and is one of the leading causes of blindness in Asian countries. The treatment options are currently limited to a few antifungal agents. With the increasing incidence of drug-resistant infections, many patients fail to respond to antibiotics. Riboflavin-mediated corneal crosslinking (similar to photodynamic therapy (PDT)) for corneal ectasia was approved in the US in the early 2000s. Current evidence suggests that PDT could have the potential to inhibit fungal biofilm formation and overcome drug resistance by using riboflavin and rose bengal as photosensitizers. However, only a few clinical trials have been initiated in anti-fungal keratitis PDT treatment. Moreover, the removal of the corneal epithelium and repeated application of riboflavin and rose bengal are required to improve drug penetration before and during PDT. Thus, an improvement in trans-corneal drug delivery is mandatory for a successful and efficient treatment. In this article, we review the studies published to date using PDT against fungal keratitis and aim to enhance the understanding and awareness of this research area. The potential of modifying photosensitizers using nanotechnology to improve the efficacy of PDT on fungal keratitis is also briefly reviewed.


Sign in / Sign up

Export Citation Format

Share Document