laser flash photolysis
Recently Published Documents


TOTAL DOCUMENTS

1479
(FIVE YEARS 42)

H-INDEX

56
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Suma S. Thomas ◽  
Helia Hosseini-Nejad ◽  
Cornelia Bohne

The dynamics of naphthalene derivatives with different hydrophobicities bound to F127 polyethyleneoxide-polypropyleneoxide-polyethyleneoxide (PEO-PPO-PEO) micelles in the gel and sol phases were studied using a quenching methodology for the triplet excited states of the naphthalenes. Studies with triplet excited states probe a larger reaction volume than the volumes accessible when using fluorescent singlet excited states. The use of triplet excited states enables the determination of the dynamics between different compartments of a supramolecular system, which in the case of F127 micelles are the micellar core, the micellar corona and the aqueous phase. This report includes laser flash photolysis studies for the four naphthalene derivatives in the F127 gel and sol phases. The triplet excited states were quenched using the nitrite anion as the quenchers. The association and dissociation rate constants of the naphthalenes from the micelles and the quenching rate constants for the naphthalenes bound to the micelles were determines from the curved quenching plot (observed decay rate constant vs. nitrite concentration).


Photochem ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 209-219
Author(s):  
Jael R. Neyra Recky ◽  
M. Laura Dántola ◽  
Carolina Lorente

Exposure to sun radiation causes great oxidative stress and activates a numerous of defense mechanisms in living systems, such as the synthesis of antioxidants. Resveratrol (RSV), a naturally occurring stilbene molecule, has antioxidant properties and is synthesized in large amounts when plants are under high oxidative stress. Likewise, under UV and visible radiation, biomolecules are oxidized, losing their physiological properties and, therefore, avoiding the harmful effects of solar radiation is crucial in order to preserve the functionality of cellular components. In proteins, one essential component that is often susceptible to degradation is the amino acid histidine (His), which can be modified via several oxidizing mechanisms. In this article, we evaluate the photoprotection capacity of RSV in photosensitized oxidation of His, which is initiated with a one-electron transfer reaction, yielding the His radical cation (His•+). The photoprotective properties of RSV are evaluated using kinetics analysis during steady-state irradiation and laser flash photolysis experiments. The experimental results reveal that the presence of RSV in the solution causes an evident decrease of the His consumption initial rates as a result of a reaction between His•+ and RSV that recovers the amino acid. In addition, we conclude that during its antioxidant action, RSV is consumed being a sacrificial antioxidant.


2021 ◽  
Author(s):  
Yuliya Tyutereva ◽  
Vyacheslav P. Grivin ◽  
Jing Xu ◽  
Feng Wu ◽  
Victor Plyusnin ◽  
...  

Abstract Reactivity of oxidative species with target pollutants is one of the crucial parameters for application of any system based on advanced oxidation processes (AOPs). This work presents new useful approach how to determine the hydroxyl radical reaction rate constants (kOH) using UVA laser flash photolysis technique. Fe(III) hydroxocomplex at pH 3 was applied as a standard source of hydroxyl radicals and methyl viologen dication (MV2+) was used as selective probe for •OH radical. Application of MV2+ allows to determine kOH values even for compounds which do not generate themselves optically detectable transient species in reaction with hydroxyl radicals. Validity of this approach was tested on a wide range of different persistent pesticides and its main advantages and drawbacks in comparison with existing steady-state and time-resolved techniques were discussed.


2021 ◽  
Vol 22 (5) ◽  
pp. 2740
Author(s):  
Stefania Abbruzzetti ◽  
Alex J. Barker ◽  
Irene Villar ◽  
Carmen Pérez-Rontomé ◽  
Stefano Bruno ◽  
...  

The recently identified nonsymbiotic hemoglobin gene MtGlb1-2 of the legume Medicago truncatula possesses unique properties as it generates four alternative splice forms encoding proteins with one or two heme domains. Here we investigate the ligand binding kinetics of MtGlb1-2.1 and MtGlb1-2.4, bearing two hemes and one heme, respectively. Unexpectedly, the overall time-course of ligand rebinding was unusually fast. Thus, we complemented nanosecond laser flash photolysis kinetics with data collected with a hybrid femtosecond–nanosecond pump–probe setup. Most photodissociated ligands are rebound geminately within a few nanoseconds, which leads to rates of the bimolecular rebinding to pentacoordinate species in the 108 M−1s−1 range. Binding of the distal histidine to the heme competes with CO rebinding with extremely high rates (kh ~ 105 s−1). Histidine dissociation from the heme occurs with comparable rates, thus resulting in moderate equilibrium binding constants (KH ~ 1). The rate constants for ligation and deligation of distal histidine to the heme are the highest reported for any plant or vertebrate globin. The combination of microscopic rates results in unusually high overall ligand binding rate constants, a fact that contributes to explaining at the mechanistic level the extremely high reactivity of these proteins toward the physiological ligands oxygen, nitric oxide and nitrite.


2021 ◽  
Author(s):  
Lin He ◽  
Erik Hans Hoffmann ◽  
Andreas Tilgner ◽  
Hartmut Herrmann

<p>Biomass burning (BB) is a significant contributor to air pollution on global, regional and local scale with impacts on air quality, public health and climate. Anhydrosugars (levoglucosan, mannosan and galactocan) and methoxyphenols (guaiacol, creosol, etc.) are important tracer compounds emitted through biomass burning. Once emitted, they can undergo complex multiphase chemistry in the atmosphere contributing to secondary organic aerosol formation. However, their chemical multiphase processing is not yet well understood and investigated by models. Therefore, the present study aimed at a better understanding of the multiphase chemistry of these BB trace species by means of detailed model studies with a new developed detailed chemical CAPRAM biomass burning module (CAPRAM-BB). This module was developed based on the kinetic data from the laser flash photolysis measurements in our lab at TROPOS and other literature studies. The developed CAPRAM-BB module includes 2991 reactions (thereof 9 phase transfers and 2982 aqueous-phase reactions). By coupling with the multiphase chemistry mechanism MCMv3.2/CAPRAM4.0 and the extended CAPRAM aromatics (CAPRAM-AM1.0) and halogen modules (CAPRAM-HM3.0), it is being applied for some residential wood burning cases in Europe and wildfire cases in the US. Our model results show that the BB chemistry could significantly affect the budgets of important atmospheric oxidants such as H<sub>2</sub>O<sub>2</sub> and HONO, and contribute to the SOA formation especially the fraction of brown carbon and substituted organic acids.</p>


2021 ◽  
Author(s):  
Andrea Zeppuhar ◽  
Steven Wolf ◽  
Daniel Falvey

Two sulfonate ester derivatives of anthraquinone, 1-tosyloxy-2-methoxy-9,10-anthraquinone (<b>1a</b>) and 1-trifluoromethylsulfonoxy-2-methoxy-9,10-anthraquinone (<b>1b</b>) were prepared and their ability to produce strong acids upon photoexcitation was examined. It is shown that these compounds generate acid with a yield that increases with light intensity when the applied photon dose is held constant. Additional experiments show that the rate of acid generation increases 4 fold when visible light (532 nm) laser pulses are combined with ultraviolet (355 nm) compared with ultraviolet alone. Continuous wave diode laser photolysis also effects acid generation with a rate that depends quadratically on the light intensity. Density functional theory calculations, laser flash photolysis, and chemical trapping experiments support a mechanism whereby an initially formed triplet state (T<sub>1</sub>) is excited to a higher triplet state which in turn undergoes homolysis of the RS(O<sub>2</sub>)–OAr bond. Secondary reactions of the initially formed sulfonyl radicals produce strong acids. It is demonstrated that high intensity photolysis of either <b>1a </b>or <b>1b</b> can initiate cationic polymerization of ethyl vinyl ether.


2021 ◽  
Author(s):  
Andrea Zeppuhar ◽  
Steven Wolf ◽  
Daniel Falvey

Two sulfonate ester derivatives of anthraquinone, 1-tosyloxy-2-methoxy-9,10-anthraquinone (<b>1a</b>) and 1-trifluoromethylsulfonoxy-2-methoxy-9,10-anthraquinone (<b>1b</b>) were prepared and their ability to produce strong acids upon photoexcitation was examined. It is shown that these compounds generate acid with a yield that increases with light intensity when the applied photon dose is held constant. Additional experiments show that the rate of acid generation increases 4 fold when visible light (532 nm) laser pulses are combined with ultraviolet (355 nm) compared with ultraviolet alone. Continuous wave diode laser photolysis also effects acid generation with a rate that depends quadratically on the light intensity. Density functional theory calculations, laser flash photolysis, and chemical trapping experiments support a mechanism whereby an initially formed triplet state (T<sub>1</sub>) is excited to a higher triplet state which in turn undergoes homolysis of the RS(O<sub>2</sub>)–OAr bond. Secondary reactions of the initially formed sulfonyl radicals produce strong acids. It is demonstrated that high intensity photolysis of either <b>1a </b>or <b>1b</b> can initiate cationic polymerization of ethyl vinyl ether.


2021 ◽  
Author(s):  
Stefano Protti ◽  
Mariella Mella ◽  
Sergio Mauricio Bonesi

Abstract. The photoreactivity of triphenylamine in homogeneous media has been investigated by means of laser flash photolysis spectroscopy and preparative experiments. The goal of this study consists in the evaluation...


Sign in / Sign up

Export Citation Format

Share Document