Amperometric method for monitoring anaerobic respiration with nitrous oxide as the terminal electron acceptor

1988 ◽  
Vol 17 (2) ◽  
pp. 95-98
Author(s):  
Kenneth D. Tucker ◽  
John L. Neal
2020 ◽  
Author(s):  
Roy Samarpita ◽  
Pradhan Nirakar ◽  
NG How Yong ◽  
Wuertz Stefan

ABSTRACTDenitrifying phosphorus removal is a cost and energy efficient treatment technology that relies on polyphosphate accumulating organisms (DPAOs) utilizing nitrate or nitrite as terminal electron acceptor. Denitrification is a multistep process and many organisms do not possess the complete pathway, leading to the accumulation of intermediates such as nitrous oxide (N2O), a potent greenhouse gas and ozone depleting substance. Candidatus Accumulibacter organisms are prevalent in denitrifying phosphorus removal processes and, according to genomic analyses, appear to vary in their denitrification abilities based on their lineage. Yet, denitrification kinetics and nitrous oxide accumulation by Accumulibacter after long-term exposure to either nitrate or nitrite as electron acceptor have never been compared. We investigated the preferential use of the nitrogen oxides involved in denitrification and nitrous oxide accumulation in two enrichments of Accumulibacter and a competitor – the glycogen accumulating organism Candidatus Competibacter. A metabolic model was modified to predict phosphorus removal and denitrification rates when nitrate, nitrite or N2O were added as electron acceptors in different combinations. Unlike previous studies, no N2O accumulation was observed for Accumulibacter in the presence of multiple electron acceptors. Electron competition did not affect denitrification kinetics or N2O accumulation in Accumulibacter or Competibacter. Despite the presence of sufficient internal storage polymers (polyhydroxyalkanoates, or PHA) as energy source for each denitrification step, the extent of denitrification observed was dependent on the dominant organism in the enrichment. Accumulibacter showed complete denitrification and N2O utilization, whereas for Competibacter denitrification was limited to reduction of nitrate to nitrite. These findings indicate that DPAOs can contribute to lowering N2O emissions in the presence of multiple electron acceptors under partial nitritation conditions.


2018 ◽  
Author(s):  
Paula B. Matheus Carnevali ◽  
Frederik Schulz ◽  
Cindy J. Castelle ◽  
Rose Kantor ◽  
Patrick Shih ◽  
...  

AbstractThe metabolic machinery from which microbial aerobic respiration evolved is tightly linked to the origins of oxygenic Cyanobacteria (Oxyphotobacteria). Even though the majority of Oxyphotobacteria are photoautotrophs and can use carbohydrates with oxygen (O2) as the electron acceptor, all are fermenters under dark anoxic conditions. Studies suggest that the ancestor of Oxyphotobacteria may have used hydrogen (H2) as an electron donor and that two types of NiFe hydrogenases are essential for its oxidation. Melainabacteria and Sericytochromatia, close phylogenetic neighbors to Oxyphotobacteria comprise fermentative and aerobic representatives, or organisms capable of both. Margulisbacteria (candidate divisions RBX-1 and ZB3) and Saganbacteria (candidate division WOR-1), a novel cluster of bacteria phylogenetically related to Melainabacteria, Sericytochromatia and Oxyphotobacteria may further constrain the metabolic platform in which oxygenic photosynthesis and aerobic respiration arose. Here, we predict the metabolisms of Margulisbacteria and Saganbacteria from new and published metagenome-assembled genomes (MAGs) and single amplified genomes (SAGs), and compare them to their phylogenetic neighbors. Sediment-associated Margulisbacteria are predicted to have a fermentation-based metabolism featuring a variety of hydrogenases, a nitrogenase for nitrogen (N2) fixation, and electron bifurcating complexes involved in cycling of ferredoxin and NAD(P)H. Overall, the genomic features suggest the capacity for metabolic fine-tuning under strictly anoxic conditions. In contrast, the genomes of Margulisbacteria from the ocean ecosystem encode an electron transport chain that supports aerobic growth. Similarly, some Saganbacteria genomes encode various hydrogenases, and others may have the ability to use O2 under certain conditions via a putative novel type of heme copper O2 reductase. Like Melainabacteria and Sericytochromatia, Margulisbacteria and Saganbacteria have diverse energy metabolisms capable of fermentation, and aerobic or anaerobic respiration. In summary, our findings support the hypothesis that the ancestor of these groups was an anaerobe in which fermentation and H2 metabolism were central metabolic features. Our genomic data also suggests that contemporary lineages sibling to the Oxyphotobacteria may have acquired the ability to use O2 as a terminal electron acceptor under certain environmental conditions.


Microbiology ◽  
2014 ◽  
Vol 160 (8) ◽  
pp. 1749-1759 ◽  
Author(s):  
Monique Luckmann ◽  
Daniel Mania ◽  
Melanie Kern ◽  
Lars R. Bakken ◽  
Åsa Frostegård ◽  
...  

Global warming is moving more and more into the public consciousness. Besides the commonly mentioned carbon dioxide and methane, nitrous oxide (N2O) is a powerful greenhouse gas in addition to its contribution to depletion of stratospheric ozone. The increasing concern about N2O emission has focused interest on underlying microbial energy-converting processes and organisms harbouring N2O reductase (NosZ), such as denitrifiers and ammonifiers of nitrate and nitrite. Here, the epsilonproteobacterial model organism Wolinella succinogenes is investigated with regard to its capacity to produce and consume N2O during growth by anaerobic nitrate ammonification. This organism synthesizes an unconventional cytochrome c nitrous oxide reductase (cNosZ), which is encoded by the first gene of an atypical nos gene cluster. However, W. succinogenes lacks a nitric oxide (NO)-producing nitrite reductase of the NirS- or NirK-type as well as an NO reductase of the Nor-type. Using a robotized incubation system, the wild-type strain and suitable mutants of W. succinogenes that either produced or lacked cNosZ were analysed as to their production of NO, N2O and N2 in both nitrate-sufficient and nitrate-limited growth medium using formate as electron donor. It was found that cells growing in nitrate-sufficient medium produced small amounts of N2O, which derived from nitrite and, most likely, from the presence of NO. Furthermore, cells employing cNosZ were able to reduce N2O to N2. This reaction, which was fully inhibited by acetylene, was also observed after adding N2O to the culture headspace. The results indicate that W. succinogenes cells are competent in N2O and N2 production despite being correctly grouped as respiratory nitrate ammonifiers. N2O production is assumed to result from NO detoxification and nitrosative stress defence, while N2O serves as a terminal electron acceptor in anaerobic respiration. The ecological implications of these findings are discussed.


2017 ◽  
Vol 28 (1-2) ◽  
pp. 84-95
Author(s):  
O. M. Moroz ◽  
S. O. Hnatush ◽  
Ch. I. Bohoslavets ◽  
T. M. Hrytsun’ ◽  
B. M. Borsukevych

Sulfate reducing bacteria, capable to reductive transformation of different nature pollutants, used in biotechnologies of purification of sewage, contaminated by carbon, sulfur, nitrogen and metal compounds. H2S formed by them sediment metals to form of insoluble sulfides. Number of metals can be used by these microorganisms as electron acceptors during anaerobic respiration. Because under the influence of metal compounds observed slowing of bacteria metabolism, selection isolated from technologically modified ecotops resistant to pollutions strains is important task to create a new biotechnologies of purification. That’s why the purpose of this work was to study the influence of potassium dichromate, present in medium, on reduction of sulfate and nitrate ions by sulfate reducing bacteria Desulfovibrio desulfuricans IMV K-6, Desulfovibrio sp. Yav-6 and Desulfovibrio sp. Yav-8, isolated from Yavorivske Lake, to estimate the efficiency of possible usage of these bacteria in technologies of complex purification of environment from dangerous pollutants. Bacteria were cultivated in modified Kravtsov-Sorokin medium without SO42- and FeCl2×4H2O for 10 days. To study the influence of K2Cr2O7 on usage by bacteria SO42- or NO3- cells were seeded to media with Na2SO4×10H2O or NaNO3 and K2Cr2O7 at concentrations of 1.74 mM for total content of electron acceptors in medium 3.47 mM (concentration of SO42- in medium of standard composition). Cells were also seeded to media with 3.47 mM Na2SO4×10H2O, NaNO3 or K2Cr2O7 to investigate their growth in media with SO42-, NO3- or Cr2O72- as sole electron acceptor (control). Biomass was determined by turbidymetric method, content of sulfate, nitrate, dichromate, chromium (III) ions, hydrogen sulfide or ammonia ions in cultural liquid – by spectrophotometric method. It was found that K2Cr2O7 inhibits growth (2.2 and 1.3 times) and level of reduction by bacteria sulfate or nitrate ions (4.2 and 3.0 times, respectively) at simultaneous addition into cultivation medium of 1.74 mM SO42- or NO3- and 1.74 mM Cr2O72-, compared with growth and level of reduction of sulfate or nitrate ions in medium only with SO42- or NO3- as sole electron acceptor. Revealed that during cultivation of bacteria in presence of equimolar amount of SO42- or NO3- and Cr2O72-, last used by bacteria faster, content of Cr3+ during whole period of bacteria cultivation exceeded content H2S or NH4+. K2Cr2O7 in medium has most negative influence on dissimilatory reduction by bacteria SO42- than NO3-, since level of nitrate ions reduction by cells in medium with NO3- and Cr2O72- was a half times higher than level of sulfate ions reduction by it in medium with SO42- and Cr2O72-. The ability of bacteria Desulfovibrio sp. to priority reduction of Cr2O72- and after their exhaustion − NO3- and SO42- in the processes of anaerobic respiration can be used in technologies of complex purification of environment from toxic compounds.


2013 ◽  
Vol 1 (24) ◽  
pp. 3816 ◽  
Author(s):  
Hao Zhuang ◽  
Qijian Zhang ◽  
Yongxiang Zhu ◽  
Xufeng Xu ◽  
Haifeng Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document