transport chain
Recently Published Documents





2022 ◽  
Vol 12 ◽  
Crystal Sweetman ◽  
Jennifer Selinski ◽  
Troy K. Miller ◽  
James Whelan ◽  
David A. Day

Alternative oxidase (AOX) is an important component of the plant respiratory pathway, enabling a route for electrons that bypasses the energy-conserving, ROS-producing complexes of the mitochondrial electron transport chain. Plants contain numerous isoforms of AOX, classified as either AOX1 or AOX2. AOX1 isoforms have received the most attention due to their importance in stress responses across a wide range of species. However, the propensity for at least one isoform of AOX2 to accumulate to very high levels in photosynthetic tissues of all legumes studied to date, suggests that this isoform has specialized roles, but we know little of its properties. Previous studies with sub-mitochondrial particles of soybean cotyledons and roots indicated that differential expression of GmAOX1, GmAOX2A, and GmAOX2D across tissues might confer different activation kinetics with pyruvate. We have investigated this using recombinantly expressed isoforms of soybean AOX in a previously described bacterial system (Selinski et al., 2016, Physiologia Plantarum 157, 264-279). Pyruvate activation kinetics were similar between the two GmAOX2 isoforms but differed substantially from those of GmAOX1, suggesting that selective expression of AOX1 and 2 could determine the level of AOX activity. However, this alone cannot completely explain the differences seen in sub-mitochondrial particles isolated from different legume tissues and possible reasons for this are discussed.

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 201
Tahereh Ashrostaghi ◽  
Sasan Aliniaeifard ◽  
Aida Shomali ◽  
Shiva Azizinia ◽  
Jahangir Abbasi Koohpalekani ◽  

Low temperatures are a substantial limitation in the geographic distribution of warm-season crops such as cucumber (Cucumis sativus L.). Tolerance to low temperatures varies among different plant species and genotypes when changes in environmental cues occur. Therefore, biochemical and biophysical events should be coordinated to form a physiological response and cope with low temperatures. We examined how light intensity influences the effects of low temperature on photosynthesis and some biochemical traits. We used chlorophyll fluorescence imaging and polyphasic fluorescence transient to analyze cold stress damage by 4 °C. Photosynthetic Photon Flux Densities (PPFDs) of 0, 300, and 600 μmol m−2 s−1, in four accessions of cucumber, were investigated. The results show that the negative effects of cold stress are PPFD-dependent. The adverse effect of cold stress on the electron transport chain is more pronounced in plants exposed to 600 μmol m−2 s−1 than the control and dark-exposed plants, indicated by a disturbance in the electron transport chain and higher energy dissipation. Moreover, biochemical traits, including the H2O2 content, ascorbate peroxidase activity, electrolyte leakage, and water-soluble carbohydrate, increased under low temperature by increasing the PPFD. In contrast, chlorophyll and carotenoid contents decreased under low temperature through PPFD elevation. Low temperature induced a H2O2 accumulation via suppressing ascorbate peroxidase activity in a PPFD-dependent manner. In conclusion, high PPFDs exacerbate the adverse effects of low temperature on the cucumber seedlings.

2022 ◽  
Vol 2 ◽  
Monica Sanchez-Contreras ◽  
Scott R. Kennedy

Mitochondria are the main source of energy used to maintain cellular homeostasis. This aspect of mitochondrial biology underlies their putative role in age-associated tissue dysfunction. Proper functioning of the electron transport chain (ETC), which is partially encoded by the extra-nuclear mitochondrial genome (mtDNA), is key to maintaining this energy production. The acquisition of de novo somatic mutations that interrupt the function of the ETC have long been associated with aging and common diseases of the elderly. Yet, despite over 30 years of study, the exact role(s) mtDNA mutations play in driving aging and its associated pathologies remains under considerable debate. Furthermore, even fundamental aspects of age-related mtDNA mutagenesis, such as when mutations arise during aging, where and how often they occur across tissues, and the specific mechanisms that give rise to them, remain poorly understood. In this review, we address the current understanding of the somatic mtDNA mutations, with an emphasis of when, where, and how these mutations arise during aging. Additionally, we highlight current limitations in our knowledge and critically evaluate the controversies stemming from these limitations. Lastly, we highlight new and emerging technologies that offer potential ways forward in increasing our understanding of somatic mtDNA mutagenesis in the aging process.

2022 ◽  
Michael Zemel ◽  
Alessia Angelin ◽  
Prasanth Potluri ◽  
Douglas Wallace ◽  
Francesca Fieni

Mitochondria generate ATP via coupling the negative electrochemical potential (proton motive force, Capital Greek (Deltap), consisting of a proton gradient (Capital Greek DeltapH+) and a membrane potential (Capital Greek Psim) across the respiratory chain, to phosphorylation of adenosine diphosphate nucleotide. In turn, DeltapH+ and Capital Greek Psim, are tightly balanced by the modulation of ionic uniporters and exchange-diffusion systems which preserve integrity of mitochondrial membranes and regulate ATP production. Here, we provide direct electrophysiological, pharmacological and genetic evidence that the main mitochondrial electrophoretic pathway for monovalent cations is associated with respiratory complex I, contrary to the long-held dogma that only H+ gradients are built across proteins of the mammalian electron transport chain. Here we propose a theoretical framework to describe how monovalent metal cations contribute to the buildup of H+ gradients and the proton motive force, extending the classical Mitchellian view on chemiosmosis and vectorial metabolism. Keywords: mitochondrial electrogenic transport, chemiosmotic theory, vectorial metabolism, whole-mitochondria electrophysiology.

2022 ◽  
Vol 7 (1) ◽  
pp. 9
Diego Ariel Meloni ◽  
María José Nieva ◽  
Carlos Alberto Martínez

In recent decades, the phytogeographic region of the Western Chaco has been subjected to heavy deforestation. The native forest was gradually replaced by agricultural crops using high doses of herbicides. Glyphosate is the most widely used herbicide, and its impact on the surrounding native flora is unknown. The aim of this work was to determine the effect of glyphosate on the germination of Prosopis alba seeds and the photosynthesis of seedlings.  Seeds were placed between paper towels, moistened with solutions of 0, 10, 20, 20, 30 and 40 mg a.i. glyphosate l-1, in a growth chamber at 25 oC and a 12 h photoperiod. The percentage of germinated seeds and the mean germination time were calculated. The respiratory rate was measured in these seeds, and the activity of complexes I and III of the respiratory chain was quantified. The shikimate concentration and antioxidant response of the seeds were also quantified. Chlorophyll a fluorescence emission variables were measured in the cotyledons. It was concluded that glyphosate inhibits germination in P. alba seeds and decreases the speed of the process.  This effect can partly be explained by inhibition of respiration, mainly at the level of complex III of the mitochondrial electron transport chain. It is also due to oxidative stress produced by the herbicide, since the antioxidant response of the seeds fails to compensate for the high production of reactive oxygen species. Glyphosate inhibits the photochemical stage of photosynthesis on P. alba cotyledons.

2022 ◽  
Vol 8 ◽  
Abhilash Padavannil ◽  
Maria G. Ayala-Hernandez ◽  
Eimy A. Castellanos-Silva ◽  
James A. Letts

Complex I (CI) is the largest protein complex in the mitochondrial oxidative phosphorylation electron transport chain of the inner mitochondrial membrane and plays a key role in the transport of electrons from reduced substrates to molecular oxygen. CI is composed of 14 core subunits that are conserved across species and an increasing number of accessory subunits from bacteria to mammals. The fact that adding accessory subunits incurs costs of protein production and import suggests that these subunits play important physiological roles. Accordingly, knockout studies have demonstrated that accessory subunits are essential for CI assembly and function. Furthermore, clinical studies have shown that amino acid substitutions in accessory subunits lead to several debilitating and fatal CI deficiencies. Nevertheless, the specific roles of CI’s accessory subunits have remained mysterious. In this review, we explore the possible roles of each of mammalian CI’s 31 accessory subunits by integrating recent high-resolution CI structures with knockout, assembly, and clinical studies. Thus, we develop a framework of experimentally testable hypotheses for the function of the accessory subunits. We believe that this framework will provide inroads towards the complete understanding of mitochondrial CI physiology and help to develop strategies for the treatment of CI deficiencies.

2021 ◽  
Vol 23 (1) ◽  
pp. 363
Viktoriia Bazylianska ◽  
Akhil Sharma ◽  
Heli Chauhan ◽  
Bernard Schneider ◽  
Anna Moszczynska

Methamphetamine (METH) is a highly abused psychostimulant that is neurotoxic to dopaminergic (DAergic) nerve terminals in the striatum and increases the risk of developing Parkinson’s disease (PD). In vivo, METH-mediated DA release, followed by DA-mediated oxidative stress and mitochondrial dysfunction in pre- and postsynaptic neurons, mediates METH neurotoxicity. METH-triggered oxidative stress damages parkin, a neuroprotective protein involved in PD etiology via its involvement in the maintenance of mitochondria. It is not known whether METH itself contributes to mitochondrial dysfunction and whether parkin regulates complex I, an enzymatic complex downregulated in PD. To determine this, we separately assessed the effects of METH or DA alone on electron transport chain (ETC) complexes and the protein parkin in isolated striatal mitochondria. We show that METH decreases the levels of selected complex I, II, and III subunits (NDUFS3, SDHA, and UQCRC2, respectively), whereas DA decreases the levels only of the NDUFS3 subunit in our preparations. We also show that the selected subunits are not decreased in synaptosomal mitochondria under similar experimental conditions. Finally, we found that parkin overexpression does not influence the levels of the NDUFS3 subunit in rat striatum. The presented results indicate that METH itself is a factor promoting dysfunction of striatal mitochondria; therefore, it is a potential drug target against METH neurotoxicity. The observed decreases in ETC complex subunits suggest that DA and METH decrease activities of the ETC complexes via oxidative damage to their subunits and that synaptosomal mitochondria may be somewhat “resistant” to DA- and METH-induced disruption in mitochondrial ETC complexes than perikaryal mitochondria. The results also suggest that parkin does not regulate NDUFS3 turnover in rat striatum.

Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 101
A. Augusto Peluso ◽  
Mads V. Damgaard ◽  
Marcelo A. S. Mori ◽  
Jonas T. Treebak

Nicotinamide adenine dinucleotide (NAD+) is an essential molecule involved in various metabolic reactions, acting as an electron donor in the electron transport chain and as a co-factor for NAD+-dependent enzymes. In the early 2000s, reports that NAD+ declines with aging introduced the notion that NAD+ metabolism is globally and progressively impaired with age. Since then, NAD+ became an attractive target for potential pharmacological therapies aiming to increase NAD+ levels to promote vitality and protect against age-related diseases. This review summarizes and discusses a collection of studies that report the levels of NAD+ with aging in different species (i.e., yeast, C. elegans, rat, mouse, monkey, and human), to determine whether the notion that overall NAD+ levels decrease with aging stands true. We find that, despite systematic claims of overall changes in NAD+ levels with aging, the evidence to support such claims is very limited and often restricted to a single tissue or cell type. This is particularly true in humans, where the development of NAD+ levels during aging is still poorly characterized. There is a need for much larger, preferably longitudinal, studies to assess how NAD+ levels develop with aging in various tissues. This will strengthen our conclusions on NAD metabolism during aging and should provide a foundation for better pharmacological targeting of relevant tissues.

Sign in / Sign up

Export Citation Format

Share Document