candidate division
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 7)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Narendrakumar M. Chaudhari ◽  
Will A. Overholt ◽  
Perla Abigail Figueroa-Gonzalez ◽  
Martin Taubert ◽  
Till L. V. Bornemann ◽  
...  

Abstract Background The highly diverse Cand. Patescibacteria are predicted to have minimal biosynthetic and metabolic pathways, which hinders understanding of how their populations differentiate in response to environmental drivers or host organisms. Their mechanisms employed to cope with oxidative stress are largely unknown. Here, we utilized genome-resolved metagenomics to investigate the adaptive genome repertoire of Patescibacteria in oxic and anoxic groundwaters, and to infer putative host ranges. Results Within six groundwater wells, Cand. Patescibacteria was the most dominant (up to 79%) super-phylum across 32 metagenomes sequenced from DNA retained on 0.2 and 0.1 µm filters after sequential filtration. Of the reconstructed 1275 metagenome-assembled genomes (MAGs), 291 high-quality MAGs were classified as Cand. Patescibacteria. Cand. Paceibacteria and Cand. Microgenomates were enriched exclusively in the 0.1 µm fractions, whereas candidate division ABY1 and Cand. Gracilibacteria were enriched in the 0.2 µm fractions. On average, Patescibacteria enriched in the smaller 0.1 µm filter fractions had 22% smaller genomes, 13.4% lower replication measures, higher proportion of rod-shape determining proteins, and of genomic features suggesting type IV pili mediated cell–cell attachments. Near-surface wells harbored Patescibacteria with higher replication rates than anoxic downstream wells characterized by longer water residence time. Except prevalence of superoxide dismutase genes in Patescibacteria MAGs enriched in oxic groundwaters (83%), no major metabolic or phylogenetic differences were observed. The most abundant Patescibacteria MAG in oxic groundwater encoded a nitrate transporter, nitrite reductase, and F-type ATPase, suggesting an alternative energy conservation mechanism. Patescibacteria consistently co-occurred with one another or with members of phyla Nanoarchaeota, Bacteroidota, Nitrospirota, and Omnitrophota. Among the MAGs enriched in 0.2 µm fractions,, only 8% Patescibacteria showed highly significant one-to-one correlation, mostly with Omnitrophota. Motility and transport related genes in certain Patescibacteria were highly similar to genes from other phyla (Omnitrophota, Proteobacteria and Nanoarchaeota). Conclusion Other than genes to cope with oxidative stress, we found little genomic evidence for niche adaptation of Patescibacteria to oxic or anoxic groundwaters. Given that we could detect specific host preference only for a few MAGs, we speculate that the majority of Patescibacteria is able to attach multiple hosts just long enough to loot or exchange supplies.


2021 ◽  
Author(s):  
Narendrakumar M. Chaudhari ◽  
Will A. Overholt ◽  
Perla Abigail Figueroa-Gonzalez ◽  
Martin Taubert ◽  
Till L.V. Bornemann ◽  
...  

Aim: The highly diverse Cand. Patescibacteria are predicted to have minimal biosynthetic and metabolic pathways, which hinders understanding of how their populations differentiate to environmental drivers or host organisms. Their metabolic traits to cope with oxidative stress are largely unknown. Here, we utilized genome-resolved metagenomics to investigate the adaptive genome repertoire of Patescibacteria in oxic and anoxic groundwaters, and to infer putative host ranges. Key findings: Within six groundwater wells, Cand. Patescibacteria was the most dominant (up to 79%) super-phylum across 32 metagenomes obtained from sequential 0.2 and 0.1 μm filtration. Of the reconstructed 1275 metagenome-assembled genomes (MAGs), 291 high-quality MAGs were classified as Cand. Patescibacteria. Cand. Paceibacteria and Cand. Microgenomates were enriched exclusively in the 0.1 μm fractions, whereas candidate division ABY1 and Cand. Gracilibacteria were enriched in the 0.2 μm fractions. Patescibacteria enriched in the smaller 0.1 μm filter fractions had 22% smaller genomes, 13.4% lower replication measures, higher fraction of rod-shape determining proteins, and genomic features suggesting type IV pili mediated cell-cell attachments. Near-surface wells harbored Patescibacteria with higher replication rates than anoxic downstream wells characterized by longer water residence time. Except prevalence of superoxide dismutase genes in Patescibacteria MAGs enriched in oxic groundwaters (83%), no major metabolic or phylogenetic differences were observed based on oxygen concentrations. The most abundant Patescibacteria MAG in oxic groundwater encoded a nitrate transporter, nitrite reductase, and F-type ATPase, suggesting an alternative energy conservation mechanism. Patescibacteria consistently co-occurred with one another or with members of phyla Nanoarchaeota, Bacteroidota, Nitrospirota, and Omnitrophota. However, only 8% of MAGs showed highly significant one-to-one association, mostly with Omnitrophota. Genes coding for motility and transport functions in certain Patescibacteria were highly similar to genes from other phyla (Omnitrophota, Proteobacteria, and Nanoarchaeota). Conclusions: Other than genes to cope with oxidative stress, we found little genomic evidence for niche adaptation of Patescibacteria to oxic or anoxic groundwaters. Given that we could detect specific host preference only for a few MAGs, we propose that the majority of Patescibacteria can attach to multiple hosts just long enough to loot or exchange supplies with an economic lifestyle of little preference for geochemical conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Oliwia Zakerska-Banaszak ◽  
Hanna Tomczak ◽  
Marcin Gabryel ◽  
Alina Baturo ◽  
Lukasz Wolko ◽  
...  

AbstractUlcerative colitis (UC) is a chronic immune-mediated disorder, whose etiology is not fully understood and for which no effective treatment is available. Recently, research has focused on the dysbiosis of gut microbiome in UC. However, the results so far remain inconsistent and insufficient to understand the microbial component in UC pathogenesis. In this study, we determine specific changes in the gut microbial profile in Polish UC patients compared to healthy subjects for the first time. Using 16S rRNA gene-based analysis we have described the intestinal microbial community in a group of 20 individuals (10 UC patients and 10 controls). Our results after multiple hypothesis testing correction demonstrated substantially lower gut microbiome diversity in UC cases compared to the controls and considerable differences at the phylum level, as well as among 13 bacterial families and 20 bacterial genera (p < 0.05). UC samples were more abundant in Proteobacteria (8.42%), Actinobacteria (6.89%) and Candidate Division TM7 (2.88%) than those of healthy volunteers (2.57%, 2.29% and 0.012%, respectively). On the other hand, Bacteroidetes and Verrucomicrobia were presented at a lower level in UC relative to the controls (14% and 0% vs 27.97% and 4.47%, respectively). In conclusion, our results show a reduced gut microbial diversity in Polish UC patients, a reduction of taxa with an anti-inflammatory impact and an increased abundance of potentially pathogenic bacteria.


2020 ◽  
pp. 1-11 ◽  
Author(s):  
Newton Z. Lupwayi ◽  
Myriam R. Fernandez ◽  
Derrick A. Kanashiro ◽  
Renee M. Petri

Due to widespread adoption of no-till management and use of glyphosate-resistant transgenic crops, glyphosate is the most widely used herbicide worldwide. However, its effect on soil microbial communities is inconsistent. We studied the effects of glyphosate, tillage, and crop rotation on the diversity and composition of soil bacterial communities in wheat (Triticum turgidum var. durum Desf.) rhizosphere after 6 and 7 yr of glyphosate applications. In a 2 × 2 × 2 factorial design, there were two crop rotation treatments: continuous wheat (W–W) and wheat in rotation with field pea (Pisum sativum L.) (P–W); two tillage treatments: minimum tillage (MT) and no-till (NT); and two glyphosate treatments: no application or pre-seeding application at the recommended rate. None of the treatments affected wheat rhizobacterial α-diversity or the relative abundances of most bacterial groups. The most abundant phyla were Proteobacteria (25.1% relative abundance), Actinobacteria (21.7%), Acidobacteria (8.7%), Bacteroidetes (5.9%), Firmicutes (1.4%), Armatimonadetes (1.3%), and Verrucomicrobia (1.2%). Glyphosate reduced the relative abundance of Alphaproteobacteria in W–W rotation but increased it in P–W rotation, and it reduced the relative abundance of Opitutus spp. The W–W rotation had greater relative abundances of the classes Bacilli (Firmicutes) and Gammaproteobacteria, and genera Bacillus and Opitutus (Verrucomicrobia), than the P–W rotation. Compared with MT, NT increased the relative abundance of the phylum candidate division WPS-1, but it reduced that of Phenylobacterium spp. in W–W rotation. These treatment effects probably had implications for soil functioning, including nutrient cycling and biological disease/pest control.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7876
Author(s):  
Kazuki Kobayashi ◽  
Hideki Aoyagi

Background The potential of unidentified microorganisms for academic and other applications is limitless. Plants have diverse microbial communities associated with their biomes. However, few studies have focused on the microbial community structure relevant to tree bark. Methods In this report, the microbial community structure of bark from the broad-leaved tree Acer palmatum was analyzed. Both a culture-independent approach using polymerase chain reaction (PCR) amplification and next generation sequencing, and bacterial isolation and sequence-based identification methods were used to explore the bark sample as a source of previously uncultured microorganisms. Molecular phylogenetic analyses based on PCR-amplified 16S rDNA sequences were performed. Results At the phylum level, Proteobacteria and Bacteroidetes were relatively abundant in the A. palmatum bark. In addition, microorganisms from the phyla Acidobacteria, Gemmatimonadetes, Verrucomicrobia, Armatimonadetes, and candidate division FBP, which contain many uncultured microbial species, existed in the A. palmatum bark. Of the 30 genera present at relatively high abundance in the bark, some genera belonging to the phyla mentioned were detected. A total of 70 isolates could be isolated and cultured using the low-nutrient agar media DR2A and PE03. Strains belonging to the phylum Actinobacteria were isolated most frequently. In addition, the newly identified bacterial strain IAP-33, presumed to belong to Acidobacteria, was isolated on PE03 medium. Of the isolated bacteria, 44 strains demonstrated less than 97% 16S rDNA sequence-similarity with type strains. Molecular phylogenetic analysis of IAD-21 showed the lowest similarity (79%), and analyses suggested it belongs to candidate division FBP. Culture of the strain IAD-21 was deposited in Japan Collection of Microorganisms (JCM) and Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) as JCM 32665 and DSM 108248, respectively. Discussion Our results suggest that a variety of uncultured microorganisms exist in A. palmatum bark. Microorganisms acquirable from the bark may prove valuable for academic pursuits, such as studying microbial ecology, and the bark might be a promising source of uncultured bacterial isolates.


2019 ◽  
Vol 85 (10) ◽  
Author(s):  
Noha H. Youssef ◽  
Ibrahim F. Farag ◽  
C. Ryan Hahn ◽  
Jessica Jarett ◽  
Eric Becraft ◽  
...  

ABSTRACTRecent experimental and bioinformatic advances enable the recovery of genomes belonging to yet-uncultured microbial lineages directly from environmental samples. Here, we report on the recovery and characterization of single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) representing candidate phylum LCP-89, previously defined based on 16S rRNA gene sequences. Analysis of LCP-89 genomes recovered from Zodletone Spring, an anoxic spring in Oklahoma, predicts slow-growing, rod-shaped organisms. LCP-89 genomes contain genes for cell wall lipopolysaccharide (LPS) production but lack the entire machinery for peptidoglycan biosynthesis, suggesting an atypical cell wall structure. The genomes, however, encode S-layer homology domain-containing proteins, as well as machinery for the biosynthesis of CMP-legionaminate, inferring the possession of an S-layer glycoprotein. A nearly complete chemotaxis machinery coupled to the absence of flagellar synthesis and assembly genes argues for the utilization of alternative types of motility. A strict anaerobic lifestyle is predicted, with dual respiratory (nitrite ammonification) and fermentative capacities. Predicted substrates include a wide range of sugars and sugar alcohols and a few amino acids. The capability of rhamnose metabolism is confirmed by the identification of bacterial microcompartment genes to sequester the toxic intermediates generated. Comparative genomic analysis identified differences in oxygen sensitivities, respiratory capabilities, substrate utilization preferences, and fermentation end products between LCP-89 genomes and those belonging to its four sister phyla (Calditrichota, SM32-31, AABM5-125-24, and KSB1) within the broader FCB (Fibrobacteres-Chlorobi-Bacteroidetes) superphylum. Our results provide a detailed characterization of members of the candidate division LCP-89 and highlight the importance of reconciling 16S rRNA-based and genome-based phylogenies.IMPORTANCEOur understanding of the metabolic capacities, physiological preferences, and ecological roles of yet-uncultured microbial phyla is expanding rapidly. Two distinct approaches are currently being utilized for characterizing microbial communities in nature: amplicon-based 16S rRNA gene surveys for community characterization and metagenomics/single-cell genomics for detailed metabolic reconstruction. The occurrence of multiple yet-uncultured bacterial phyla has been documented using 16S rRNA surveys, and obtaining genome representatives of these yet-uncultured lineages is critical to our understanding of the role of yet-uncultured organisms in nature. This study provides a genomics-based analysis highlighting the structural features and metabolic capacities of a yet-uncultured bacterial phylum (LCP-89) previously identified in 16S rRNA surveys for which no prior genomes have been described. Our analysis identifies several interesting structural features for members of this phylum, e.g., lack of peptidoglycan biosynthetic machinery and the ability to form bacterial microcompartments. Predicted metabolic capabilities include degradation of a wide range of sugars, anaerobic respiratory capacity, and fermentative capacities. In addition to the detailed structural and metabolic analysis provided for candidate division LCP-89, this effort represents an additional step toward a unified scheme for microbial taxonomy by reconciling 16S rRNA gene-based and genomics-based taxonomic outlines.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 160 ◽  
Author(s):  
Yi Ding ◽  
Zhenlin Liang ◽  
Zhansheng Guo ◽  
Zhipeng Li ◽  
Xuguang Hou ◽  
...  

The anaerobic membrane bioreactors (AnMBR) with ring membrane module were operated under mesophilic temperature (M-AnMBR) and atmospheric temperature (A-AnMBR). Compared to the M-AnMBR, the removal efficiency of the A-AnMBR was found to be lower and the faster membrane fouling occurred in the A-AnMBR under corresponding hydraulic retention time (HRT). The MiSeq high-throughput sequencing was applied to analyze the microbial community structure. The HRT change had different effects on the community richness and diversity of the cake and bulk sludge. The abundance of phylum Proteobacteria in the M-AnMBR was higher than that in the A-AnMBR, which should account for the higher removal of nutrients in the M-AnMBR. The faster membrane fouling would occur in the A-AnMBR due to the relatively high abundance of Bacteroidetes in the bulk sludge and cake sludge. Moreover, specific comparison down to the genus level showed that the dominant abundant bacterial genera were Candidate division OP8 norank and Anaerolineaceae uncultured in the cake sludge for M-AnMBR, and were VadinHA17 norank, WCHB1-69 norank, VadinBC27 wastewater-sludge group, and Synergistaceae uncultured in the cake sludge for A-AnMBR The different representative genera with the variation of the HRTs for the two bioreactors might indicate the different performance between the two AnMBRs.


2018 ◽  
Author(s):  
K. Martin Eriksson ◽  
Kemal Sanli ◽  
Henrik Nilsson ◽  
Alexander Eiler ◽  
Natalia Corcoll ◽  
...  

The antibacterial agent Triclosan (TCS) is an ubiquitous environmental contaminant due to its widespread use. Sensitivity to TCS varies substantially among eu- and pro-karyotic species and its risk for the marine environment remains to be better elucidated. In particular, the effects that TCS causes on marine microbial communities are largely unknown. In this study we therefore used 16S amplicon rDNA sequencing to investigate TCS effects on the bacterial composition in marine periphyton communities that developed under long-term exposure to different TCS concentrations. Exposure to TCS resulted in clear changes in bacterial composition already at concentrations of 1 to 3.16 nM. We conclude that TCS affects the structure of the bacterial part of periphyton communities at concentrations that actually occur in the marine environment. Sensitive taxa, whose abundance decreased significantly with increasing TCS concentrations, include the Rhodobiaceae and Rhodobacteraceae families of Alphaproteobacteria, and unidentified members of the Candidate division OD1. Tolerant taxa, whose abundance increased significantly with higher TCS concentrations, include the families Erythrobacteraceae (Alphaproteobacteria), Flavobacteriaceae (Bacteroidetes), Bdellovibrionaceae (Deltaproteobacteria), several families of Gammaproteobacteria, and members of the Candidate phylum BD1-5. Our results demonstrate the variability of TCS sensitivity among bacteria, and the importance of extending the ecotoxicological assessment of antimicrobial chemicals, such as TCS, to non-cultivable bacteria and natural communities.


Author(s):  
K. Martin Eriksson ◽  
Kemal Sanli ◽  
Henrik Nilsson ◽  
Alexander Eiler ◽  
Natalia Corcoll ◽  
...  

The antibacterial agent Triclosan (TCS) is an ubiquitous environmental contaminant due to its widespread use. Sensitivity to TCS varies substantially among eu- and pro-karyotic species and its risk for the marine environment remains to be better elucidated. In particular, the effects that TCS causes on marine microbial communities are largely unknown. In this study we therefore used 16S amplicon rDNA sequencing to investigate TCS effects on the bacterial composition in marine periphyton communities that developed under long-term exposure to different TCS concentrations. Exposure to TCS resulted in clear changes in bacterial composition already at concentrations of 1 to 3.16 nM. We conclude that TCS affects the structure of the bacterial part of periphyton communities at concentrations that actually occur in the marine environment. Sensitive taxa, whose abundance decreased significantly with increasing TCS concentrations, include the Rhodobiaceae and Rhodobacteraceae families of Alphaproteobacteria, and unidentified members of the Candidate division OD1. Tolerant taxa, whose abundance increased significantly with higher TCS concentrations, include the families Erythrobacteraceae (Alphaproteobacteria), Flavobacteriaceae (Bacteroidetes), Bdellovibrionaceae (Deltaproteobacteria), several families of Gammaproteobacteria, and members of the Candidate phylum BD1-5. Our results demonstrate the variability of TCS sensitivity among bacteria, and the importance of extending the ecotoxicological assessment of antimicrobial chemicals, such as TCS, to non-cultivable bacteria and natural communities.


2018 ◽  
Author(s):  
Paula B. Matheus Carnevali ◽  
Frederik Schulz ◽  
Cindy J. Castelle ◽  
Rose Kantor ◽  
Patrick Shih ◽  
...  

AbstractThe metabolic machinery from which microbial aerobic respiration evolved is tightly linked to the origins of oxygenic Cyanobacteria (Oxyphotobacteria). Even though the majority of Oxyphotobacteria are photoautotrophs and can use carbohydrates with oxygen (O2) as the electron acceptor, all are fermenters under dark anoxic conditions. Studies suggest that the ancestor of Oxyphotobacteria may have used hydrogen (H2) as an electron donor and that two types of NiFe hydrogenases are essential for its oxidation. Melainabacteria and Sericytochromatia, close phylogenetic neighbors to Oxyphotobacteria comprise fermentative and aerobic representatives, or organisms capable of both. Margulisbacteria (candidate divisions RBX-1 and ZB3) and Saganbacteria (candidate division WOR-1), a novel cluster of bacteria phylogenetically related to Melainabacteria, Sericytochromatia and Oxyphotobacteria may further constrain the metabolic platform in which oxygenic photosynthesis and aerobic respiration arose. Here, we predict the metabolisms of Margulisbacteria and Saganbacteria from new and published metagenome-assembled genomes (MAGs) and single amplified genomes (SAGs), and compare them to their phylogenetic neighbors. Sediment-associated Margulisbacteria are predicted to have a fermentation-based metabolism featuring a variety of hydrogenases, a nitrogenase for nitrogen (N2) fixation, and electron bifurcating complexes involved in cycling of ferredoxin and NAD(P)H. Overall, the genomic features suggest the capacity for metabolic fine-tuning under strictly anoxic conditions. In contrast, the genomes of Margulisbacteria from the ocean ecosystem encode an electron transport chain that supports aerobic growth. Similarly, some Saganbacteria genomes encode various hydrogenases, and others may have the ability to use O2 under certain conditions via a putative novel type of heme copper O2 reductase. Like Melainabacteria and Sericytochromatia, Margulisbacteria and Saganbacteria have diverse energy metabolisms capable of fermentation, and aerobic or anaerobic respiration. In summary, our findings support the hypothesis that the ancestor of these groups was an anaerobe in which fermentation and H2 metabolism were central metabolic features. Our genomic data also suggests that contemporary lineages sibling to the Oxyphotobacteria may have acquired the ability to use O2 as a terminal electron acceptor under certain environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document