aerobic respiration
Recently Published Documents


TOTAL DOCUMENTS

275
(FIVE YEARS 79)

H-INDEX

42
(FIVE YEARS 8)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jieni Fu ◽  
Weidong Zhu ◽  
Xiangmei Liu ◽  
Chunyong Liang ◽  
Yufeng Zheng ◽  
...  

AbstractClinically, it is difficult to endow implants with excellent osteogenic ability and antibacterial activity simultaneously. Herein, the self-activating implants modified with hydroxyapatite (HA)/MoS2 coating are designed to prevent Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) infections and accelerate bone regeneration simultaneously. The electron transfer between bacteria and HA/MoS2 is triggered when bacteria contacted with the material. RNA sequencing data reveals that the expression level of anaerobic respiration–related genes is up-regulated and the expression level of aerobic respiration–related genes is down-regulated when bacteria adhere to the implants. HA/MoS2 presents a highly effective antibacterial efficacy against both S. aureus and E. coli because of bacterial respiration–activated metabolic pathway changes. Meanwhile, this coating promotes the osteoblastic differentiation of mesenchymal stem cells by altering the potentials of cell membrane and mitochondrial membrane. The proposed strategy exhibits great potential to endow implants with self-activating anti-infection performance and osteogenic ability simultaneously.


Author(s):  
Bénédicte Cesselin ◽  
Céline Henry ◽  
Alexandra Gruss ◽  
Karine Gloux ◽  
Philippe Gaudu

Acetoin, 3-hydroxyl,2-butanone, is extensively used as a flavor additive in food products. This volatile compound is produced by the dairy bacterium Lactococcus lactis when aerobic respiration is activated by haem addition, and comprises ∼70% of carbohydrate degradation products. Here we investigate the targets of acetoin toxicity, and determine how acetoin impacts L. lactis physiology and survival. Acetoin caused damage to DNA and proteins, which related to reactivity of its keto group. Acetoin stress was reflected in proteome profiles, which revealed changes in lipid metabolic proteins. Acetoin provoked marked changes in fatty acid composition, with massive accumulation of cycC19:0 cyclopropane fatty acid at the expense of its unsaturated C18:1 fatty acid precursor. Deletion of the cfa gene, encoding the cycC19:0 synthase, sensitized cells to acetoin stress. Acetoin-resistant transposon mutagenesis revealed a hot spot in the high affinity phosphate transporter operon pstABCDEF , which is known to increase resistance to multiple stresses. This work reveals the causes and consequences of acetoin stress on L. lactis , and may facilitate control of lactic acid bacteria production in technological processes. Importance Acetoin, 3-hydroxyl,2-butanone, has diverse uses in chemical industry, agriculture, and dairy industries as a volatile compound that generates aromas. In bacteria, it can be produced in high amount by Lactococcus lactis when it grows under aerobic respiration. However, acetoin production can be toxic and detrimental for growth and/or survival. Our results showed that it damages DNA and proteins via its keto group. We also showed that acetoin modifies membrane fatty acid composition with the production of cyclopropane C19:0 fatty acid at the expense of an unsaturated C18:1. We isolated mutants more resistant to acetoin than the wild-type strain. All of them mapped to a single locus pstABCDEF operon, suggesting a simple means to limit acetoin toxicity in dairy bacteria and to improve its production.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2247
Author(s):  
Toru Shigematsu ◽  
Yuta Kaneko ◽  
Minami Ikezaki ◽  
Chihiro Kataoka ◽  
Kazuki Nomura ◽  
...  

A sparkling-type draft cloudy sake (Japanese rice wine), AWANAMA, was recently developed using high hydrostatic pressure (HHP) treatment as a non-thermal pasteurization method. This prototype sake has a high potential market value, since it retains the fresh taste and flavor similar to draft sake while avoiding over-fermentation. From an economic point of view, a lower pressure level for HHP pasteurization is still required. In this study, we carried out a genome analysis of a pressure-sensitive (piezosensitive) mutant strain, a924E1, which was generated by UV mutagenesis from a laboratory haploid Saccharomyces cerevisiae strain, KA31a. This mutant strain had a deletion of the COX1 gene region in the mitochondrial DNA and had deficient aerobic respiration and mitochondrial functions. A metabolomic analysis revealed restricted flux in the TCA cycle of the strain. The results enabled us to use aerobic respiration deficiency as an indicator for screening a piezosensitive mutant. Thus, we generated piezosensitive mutants from a Niigata-sake yeast strain, S9arg, which produces high levels of ethyl caproate but does not produce urea and is consequently suitable for brewing a high-quality sake. The resultant piezosensitive mutants showed brewing characteristics similar to the S9arg strain. This study provides a screening method for generating a piezosensitive yeast mutant as well as insight on a new way of applying HHP pasteurization.


2021 ◽  
Author(s):  
Stephen B. Ferencz ◽  
M. Bayani Cardenas ◽  
Bethany T. Neilson

2021 ◽  
Vol 12 ◽  
Author(s):  
Kristen Bertling ◽  
Areen Banerjee ◽  
Daad Saffarini

Shewanella oneidensis MR-1 is a facultative anaerobe known for its ability to reduce metal oxides. Anaerobic respiration, especially metal reduction, has been the subject of extensive research. In contrast, S. oneidensis aerobic respiration has received less attention. S. oneidensis expresses cbb3- and aa3-type cytochrome c oxidases and a bd-type quinol oxidase. The aa3-type oxidase, which in other bacteria is the major oxygen reductase under oxygen replete conditions, does not appear to contribute to aerobic respiration and growth in S. oneidensis. Our results indicated that although the aa3-type oxidase does not play a role in aerobic growth on lactate, the preferred carbon source for S. oneidensis, it is involved in growth on pyruvate or acetate. These results highlight the importance of testing multiple carbon and energy sources when attempting to identify enzyme activities and mutant phenotypes. Several regulatory proteins contribute to the regulation of aerobic growth in S. oneidensis including CRP and ArcA. The 3',5'-cAMP phosphodiesterase (CpdA) appears to play a more significant role in aerobic growth than either CRP or ArcA, yet the deficiency does not appear to be the result of reduced oxidase genes expression. Interestingly, the ∆cpdA mutant was more deficient in aerobic respiration with several carbon sources tested compared to ∆crp, which was moderately deficient only in the presence of lactate. To identify the reason for ∆cpdA aerobic growth deficiency, we isolated a suppressor mutant with transposon insertion in SO_3550. Inactivation of this gene, which encodes an anti-sigma factor, restored aerobic growth in the cpdA mutant to wild-type levels. Inactivation of SO_3550 in wild-type cells, however, did not affect aerobic growth. The S. oneidensis genome encodes two additional CRP-like proteins that we designated CrpB and CrpC. Mutants that lack crpB and crpC were deficient in aerobic growth, but this deficiency was not due to the loss of oxidase gene expression.


2021 ◽  
Author(s):  
Kjell Rune Jonassen ◽  
Live H. Hagen ◽  
Silas H. W. Vick ◽  
Magnus Ø. Arntzen ◽  
Vincent G. H. Eijsink ◽  
...  

AbstractInoculating agricultural soils with nitrous oxide respiring bacteria (NRB) can reduce N2O-emission, but would be impractical as a standalone operation. Here we demonstrate that digestates obtained after biogas production are suitable substrates and vectors for NRB. We show that indigenous NRB in digestates grew to high abundance during anaerobic enrichment under N2O. Gas-kinetics and meta-omic analyses showed that these NRB’s, recovered as metagenome-assembled genomes (MAGs), grew by harvesting fermentation intermediates of the methanogenic consortium. Three NRB’s were isolated, one of which matched the recovered MAG of a Dechloromonas, deemed by proteomics to be the dominant producer of N2O-reductase in the enrichment. While the isolates harbored genes required for a full denitrification pathway and could thus both produce and sequester N2O, their regulatory traits predicted that they act as N2O sinks in soil, which was confirmed experimentally. The isolates were grown by aerobic respiration in digestates, and fertilization with these NRB-enriched digestates reduced N2O emissions from soil. Our use of digestates for low-cost and large-scale inoculation with NRB in soil can be taken as a blueprint for future applications of this powerful instrument to engineer the soil microbiome, be it for enhancing plant growth, bioremediation, or any other desirable function.


2021 ◽  
Author(s):  
Marziyeh Alizadeh Zarei ◽  
Elahe Seyed Hosseini ◽  
Hamed Haddad Kashani ◽  
Ejaz Ahmad ◽  
Hossein Nikzad

AbstractBackgroundExercise has been shown to be associated with reduced risk and improving outcomes of several types of cancers. Irisin −a novel exercise-related myokine- has been proposed to exert beneficial effects in metabolic disorders including cancer. No previous studies have investigated whether irisin may regulate malignant characteristics of ovarian cell lines.MethodsIn the present study, we aimed to explore the effect of irisin on viability and proliferation of ovarian cancer cells which was examined by MTT assay. Then, we evaluated migratory and invasive ability of the cells via transwell assays. Moreover, the percentage of apoptosis induction was determined by flowcytometery. Furthermore, the mRNA expression level of genes related to the aerobic respiration (HIF-1α, c-Myc, LDHA, PDK1 and VEGF) were detected by real-time PCR.ResultsOur data revealed that irisin treatment significantly attenuated the proliferation, migration and invasion of ovarian cancer cells. Besides, irisin induced apoptosis in ovarian cancer cells. We also observed that irisin regulated the expression of genes involved in aerobic respiration of ovarian cancer cells.ConclusionOur results indicate that irisin may play a crucial role in inhibition of cell growth and malignant characteristics of ovarian cancer. This findings may open up avenues for future studies to identify the further therapeutic use of irisin in ovarian cancer management.


2021 ◽  
Author(s):  
Qingda Wang ◽  
Zhigang Chen ◽  
Xi Zhang ◽  
Yuping Xin ◽  
Yongzhen Xia ◽  
...  

During aerobic respiration, mitochondria generate superoxide anion (O2&middot−), hydrogen peroxide (H2O2), and hydroxyl radical (HO·), and these reactive oxygen species (ROS) are detrimental to mitochondria. Mitochondrial damage is linked to a broad spectrum of pathologies such as Alzheimer's disease, hemochromatosis, and diabetes. Mitochondria contain several enzymes for rapidly removing superoxide anion and hydrogen peroxide, but how they antagonize HO· is elusive, representing a loophole in the anti-ROS system. Herein, we discovered that Rhodanese 2 (Rdl2) is critical for maintaining the functionality and integrity of mitochondria under sub-lethal ROS stress in Saccharomyces cerevisiae. Rdl2 converts stable sulfur species (thiosulfate and dialkyl polysulfide) to reactive sulfane sulfur including persulfide that protects mitochondrial DNA via scavenging HO·. Surprisingly, hydrogen sulfide (H2S) promotes HO· production through stimulating the Fenton reaction, leading to increased DNA damage. Our study may reveal an ex-ante mean for antagonizing HO·, patching the loophole of the anti-ROS system in mitochondria.


Author(s):  
Dimitri V. Meier ◽  
Andreas J. Greve ◽  
Arjun Chennu ◽  
Marit R. van Erk ◽  
Thirumahal Muthukrishnan ◽  
...  

Hypersaline microbial mats are dense microbial ecosystems capable of performing complete element cycling and are considered analogs of Early Earth and hypothetical extraterrestrial ecosystems. We studied the functionality and limits of key biogeochemical processes, such as photosynthesis, aerobic respiration, and sulfur cycling in salt crust-covered microbial mats from a tidal flat at the coast of Oman. We measured light, oxygen, and sulfide microprofiles as well as sulfate-reduction rates at salt saturation and in flood conditions and determined fine-scale stratification of pigments, biomass, and microbial taxa in the resident microbial community. The salt crust did not protect the mats against irradiation or evaporation. Although some oxygen production was measurable at salinity ≤ 30% (w/v) in situ , at saturation-level salinity (40%), oxygenic photosynthesis was completely inhibited and only resumed two days after reducing the pore water salinity to 12%. Aerobic respiration and active sulfur cycling occurred at low rates under salt saturation and increased strongly upon salinity reduction. Apart from high relative abundances of Chloroflexi, photoheterotrophic Alphaproteobacteria , Bacteroidetes , and Archaea, the mat contained a distinct layer harboring filamentous Cyanobacteria , which is unusual for such high salinities. Our results show that the diverse microbial community inhabiting this saltflat mat ultimately depends on periodic salt dilution to be self-sustaining and is rather adapted to merely survive salt saturation than to thrive under the salt crust. Importance Due to their abilities to survive intense radiation and low water availability hypersaline microbial mats are often suggested to be analogs of potential extraterrestrial life. However, even on Earth the limitations imposed on microbial processes by saturation-level salinity have rarely been studied in situ . While abundance and diversity of microbial life in salt-saturated environments is well documented, most of our knowledge on process limitations stems from culture-based studies, few in situ studies, and theoretical calculations. Especially oxygenic photosynthesis has barely been explored beyond 5M NaCl (28% w/v). By applying a variety of biogeochemical and molecular methods we show that despite abundance of photoautotrophic microorganisms, oxygenic photosynthesis is inhibited in salt-crust covered microbial mats at saturation salinities, while rates of other energy generation processes are decreased several fold. Hence, the complete element cycling required for self-sustaining microbial communities only occurs at lower salt concentrations.


Sign in / Sign up

Export Citation Format

Share Document