On a problem of heat conduction with time-dependent boundary conditions

1957 ◽  
Vol 8 (6) ◽  
pp. 478-484 ◽  
Author(s):  
Tse-Sun Chow
2021 ◽  
pp. 143-143
Author(s):  
Jordan Hristov

Transient heat conduction in semi-infinite medium with a power-law time-dependent boundary conditions has been solved by an integral-balance integral method applying to a semi-derivative approach. Two versions of the integral-balance method have been applied: Goodman?s method with a generalized parabolic profile and Zien?s method with exponential (original and modified) profile.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Pranay Biswas ◽  
Suneet Singh

The separation of variables (SOV) can be used for all Fourier, single-phase lag (SPL), and dual-phase lag (DPL) heat conduction problems with time-independent source and/or boundary conditions (BCs). The Laplace transform (LT) can be used for problems with time-dependent BCs and sources but requires large computational time for inverse LT. In this work, the orthogonal eigenfunction expansion (OEEM) has been proposed as an alternate method for non-Fourier (SPL and DPL) heat conduction problem. However, the OEEM is applicable only for cases where BCs are homogeneous. Therefore, BCs of the original problem are homogenized by subtracting an auxiliary function from the temperature to get a modified problem in terms of a modified temperature. It is shown that the auxiliary function has to satisfy a set of conditions. However, these conditions do not lead to a unique auxiliary function. Therefore, an additional condition, which simplifies the modified problem, is proposed to evaluate the auxiliary function. The methodology is verified with SOV for time-independent BCs. The implementation of the methodology is demonstrated with illustrative example, which shows that this approach leads to an accurate solution with reasonable number of terms in the expansion.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Sen-Yung Lee ◽  
Chih-Cheng Huang

An analytic solution method, without integral transformation, is developed to find the exact solutions for transient heat conduction in functionally graded (FG) circular hollow cylinders with time-dependent boundary conditions. By introducing suitable shifting functions, the governing second-order regular singular differential equation with variable coefficients and time-dependent boundary conditions is transformed into a differential equation with homogenous boundary conditions. The exact solution of the system with thermal conductivity and specific heat in power functions with different orders is developed. Finally, limiting studies and numerical analyses are given to illustrate the efficiency and the accuracy of the analysis.


Sign in / Sign up

Export Citation Format

Share Document