3-dimensionalSU(2) lattice gauge theory in terms of gauge invariant variables

1982 ◽  
Vol 15 (4) ◽  
pp. 337-342
Author(s):  
Annette Holtkamp
1998 ◽  
Vol 13 (11) ◽  
pp. 861-871 ◽  
Author(s):  
PAOLO CEA ◽  
LEONARDO COSMAI

We analyze the problem of the Nielsen–Olesen unstable modes in the SU(2) lattice gauge theory by means of a recently introduced gauge-invariant effective action. We perform numerical simulations in the case of a constant Abelian chromomagnetic field. We find that for lattice sizes above a certain critical length, the density of effective action shows a behavior compatible with the presence of the unstable modes. We put out a possible relation between the dynamics of the unstable modes and the confinement.


2022 ◽  
Vol 258 ◽  
pp. 09004
Author(s):  
Matteo Favoni ◽  
Andreas Ipp ◽  
David I. Müller ◽  
Daniel Schuh

In these proceedings we present lattice gauge equivariant convolutional neural networks (L-CNNs) which are able to process data from lattice gauge theory simulations while exactly preserving gauge symmetry. We review aspects of the architecture and show how L-CNNs can represent a large class of gauge invariant and equivariant functions on the lattice. We compare the performance of L-CNNs and non-equivariant networks using a non-linear regression problem and demonstrate how gauge invariance is broken for non-equivariant models.


Author(s):  
Arata Yamamoto

Abstract We study the quantum simulation of Z2 lattice gauge theory in 2+1 dimensions. The dual variable formulation, the so-called Wegner duality, is utilized for reducing redundant gauge degrees of freedom. The problem of artificial charge unconservation is resolved for any charge distribution. As a demonstration, we simulate the real-time evolution of the system with two static electric charges, i.e., with two temporal Wilson lines. Some results obtained by the simulator (with no hardware noise) and the real device (with sizable hardware noise) of a quantum computer are shown.


Sign in / Sign up

Export Citation Format

Share Document