On characteristic operator-functions of Lie-algebras

1983 ◽  
Vol 6 (1) ◽  
pp. 312-318 ◽  
Author(s):  
L. L. Waksman
Author(s):  
Vasiliy. I Fomin

A linear inhomogeneous differential equation (LIDE) of the n th order with constant bounded operator coefficients is studied in Banach space. Finding a general solution of LIDE is reduced to the construction of a general solution to the corresponding linear homogeneous differential equation (LHDE). Characteristic operator equation for LHDE is considered in the Banach algebra of complex operators. In the general case, when both real and complex operator roots are among the roots of the characteristic operator equation, the n -parametric family of solutions to LHDE is indicated. Operator functions eAt ; sinBt ; cosBt of real argument t ∈ [0;∞) are used when building this family. The conditions under which this family of solutions form a general solution to LHDE are clarified. In the case when the characteristic operator equation has simple real operator roots and simple pure imaginary operator roots, a specific form of such conditions is indicated. In particular, these roots must commute with LHDE operator coefficients. In addition, they must commute with each other. In proving the corresponding assertion, the Cramer operator-vector rule for solving systems of linear vector equations in a Banach space is applied


Author(s):  
I. Gohberg ◽  
M. A. Kaashoek ◽  
S. Goldberg

Author(s):  
Josi A. de Azcárraga ◽  
Josi M. Izquierdo
Keyword(s):  

2018 ◽  
Vol 2018 (2) ◽  
pp. 43-49
Author(s):  
R.K. Gaybullaev ◽  
Kh.A. Khalkulova ◽  
J.Q. Adashev

2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


2018 ◽  
Vol 13 (3) ◽  
pp. 59-63 ◽  
Author(s):  
D.T. Siraeva

Equations of hydrodynamic type with the equation of state in the form of pressure separated into a sum of density and entropy functions are considered. Such a system of equations admits a twelve-dimensional Lie algebra. In the case of the equation of state of the general form, the equations of gas dynamics admit an eleven-dimensional Lie algebra. For both Lie algebras the optimal systems of non-similar subalgebras are constructed. In this paper two partially invariant submodels of rank 3 defect 1 are constructed for two-dimensional subalgebras of the twelve-dimensional Lie algebra. The reduction of the constructed submodels to invariant submodels of eleven-dimensional and twelve-dimensional Lie algebras is proved.


Sign in / Sign up

Export Citation Format

Share Document