Relation between bone marrow hemosiderin iron, serum iron status markers, and chemical and histochemical liver iron content in 82 patients with alcoholic and nonalcoholic hepatic disease

1993 ◽  
Vol 66 (4) ◽  
pp. 203-207 ◽  
Author(s):  
N. Milman ◽  
N. Graudal ◽  
J. Hegnhøj ◽  
J. Visfeldt ◽  
P. Christoffersen ◽  
...  
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4024-4024
Author(s):  
Carla Casu ◽  
Mariam Aghajan ◽  
Rea Oikonomidau ◽  
Shuling Guo ◽  
Brett P. Monia ◽  
...  

Abstract Patients affected by non-transfusion dependent thalassemia (NTDT) do not require chronic blood transfusion for survival. However, transfusion-independence in such patients is not without side effects. Ineffective erythropoiesis (IE), the hallmark of disease, leads to a variety of serious clinical morbidities. In NTDT the master regulator of iron homeostasis, hepcidin, is chronically repressed. Consequently, patients absorb abnormally high levels of iron, which eventually requires iron chelation to prevent the clinical sequelaes associated with iron overload. It has been shown that in mice affected by NTDT (Hbbth3/+), a second-generation antisense oligonucleotide (Tmprss6-ASO) can reduce expression of transmembrane serine protease Tmprss6, the major suppressor of hepcidin expression. This leads to reduction of hemichrome formation in erythroid cells, amelioration of IE and splenomegaly, and increased hemoglobin levels (Guo et al, JCI, 2013). Now we propose the use of Tmprss6-ASO in combination with iron chelators for the treatment of NTDT using Hbbth3/+ mice as a preclinical model. Our hypothesis is that use of chelators will benefit from the positive effect of Tmprss6-ASO on erythropoiesis and iron absorption, further ameliorating organ iron content. To this end, Hbbth3/+ animals were treated with Tmprss6-ASO at 100 mg/kg/week for 6 weeks with or without the iron chelator deferiprone (DFP) at a dose of 1.25 mg/ml. Additional animals were treated with DFP alone. We fed the animals with a commercial or physiological diet, containing 200 or 35 ppm of iron, respectively. We did not observe major differences in the treated animals fed the commercial or physiological iron diet and, for this reason, the data were combined for simplicity. Administration of DFP alone was successful in decreasing organ iron content. Compared to untreated Hbbth3/+ animals, we observed a reduction of 30% and 33% in the liver and spleen, respectively, and no change in the kidney. However, erythropoiesis was not improved (looking at IE, splenomegaly, RBC production and total Hb levels). This was associated with increased serum iron levels (+25%). In Tmprss6-ASO treated Hbbth3/+ animals, we observed an improvement in liver iron content (36% reduction), amelioration of IE, and increased RBC and Hb synthesis (~2 g/dL). Compared to treatment with Tmprss6-ASO alone, combination of DFP with Tmprss6-ASO achieved the same level of suppression of Tmprss6 in the liver (~90%) and reduction of serum iron parameters. This was associated with improvement of IE, decreased reticulocyte counts and splenomegaly, and increased RBC and Hb synthesis (~2 g/dL). While we observed that both Tmprss6-ASO and DFP separately reduced liver iron content to the same extent (~30-36%), combination treatment further reduced iron concentrations in the liver and kidney (69% and 19%, respectively), with no changes in the spleen. Additional analyses are in progress to evaluate the amount of hepcidin in serum as well as expression of erythroferrone, the erythroid regulator of hepcidin. Our first conclusion is that administration of an iron chelator alone is not sufficient to improve erythropoiesis despite that organ iron content is reduced. We speculate that when iron is removed from the liver, hepcidin expression becomes more susceptible to the suppressive effect of IE rather than the enhancing effect of reduced liver organ iron concentration. In addition, the combined effect of iron mobilized from organs and unchanged (or even augmented) iron absorption leads to increased serum iron concentration. As we have shown previously, amelioration of IE in this model requires decreased erythroid iron intake and hemichrome formation. Therefore, iron chelation alone is likely insufficient to improve erythropoiesis. Additional experiments are in progress to further elucidate this mechanism. Our second conclusion is that use of Tmprss6-ASO together with DFP combines the best effects of these two drugs, in particular on erythropoiesis and organ iron content. In animals that received the combined treatment, kidney and liver iron concentrations were further decreased compared to the single treatments. This indicates that Tmprss6-ASO might be extremely helpful in the treatment of NTDT and it could further improve iron related-chelation therapies. Disclosures Casu: Merganser Biotech LLC: Employment; Isis Pharmaceuticals, Inc.: Employment. Aghajan:Isis Pharmaceuticals, Inc.: Employment. Guo:Isis Pharmaceuticals, Inc.: Employment. Monia:Isis Pharmaceuticals, Inc.: Employment. Rivella:bayer: Consultancy, Research Funding; isis Pharmaceuticals, Inc.: Consultancy, Research Funding; merganser Biotech LLC: Consultancy, Research Funding, Stock options , Stock options Other.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Patricia Carrilho ◽  
Anna Lima ◽  
Rita Manso ◽  
Lucinda Nobrega ◽  
Alexandra Lima Santos ◽  
...  

Abstract Background and Aims Studies using T2 MRI liver scans among Hemodialysis (HD) patients raised concern about the presence of iron overload in this population, regularly treated with intravenous (IV) iron. Histological evidence of tissue iron overload is scarce, since the majority of studies were performed in pre-erythropoiesis- stimulating agents (ESA’s) era, when blood transfusions were common. Primary objective: to quantify iron in the liver and bone marrow by biochemical and histological analysis, in adult CKD stage 5-HD. Secondary objectives: To explore association of clinical, laboratorial parameters, IV iron therapy and iron stores. Method After approval of local Ethical committee and informed consent from families, liver biopsy and bone marrow aspirate were obtained in the first 24h post-mortem from 21 chronic HD patients with anemia or under anemia treatment who died in Hospital Fernando Fonseca. Exclusion criteria: blood transfusion in the previous 2 weeks, acute or chronic liver disease, HIV infection, known hematologic or oncologic disease. Clinical, laboratorial and anemia therapy data were retrieved from hospital registry and outpatient HD centers. Biochemical liver iron content (LIC) was quantified by atomic absorption spectrophotometry. Histological semi-quantitative grading of iron storage was made in the liver and bone marrow using Scheuer’s and Gale’s criteria of grading Perls’ stain, respectively. Results Of 21 patients included, 10 (47,6%) were male, median (IQR) age 76.0 (67.5-85.5) years old, 18 (85.7%) white, 3 (14.3%) black, dialysis vintage was 47.0 (12.5-104.0) months. Charlson Comorbidity index was 10.0 (7.5-11.0), 7 (33%) patients had diabetes, and 11 (52.4%) used an arteriovenous fistula as vascular access. The cause of death was infection (n=9, 42.9%), cardiovascular (N=6, 28.6%), HD withdrawal (n=2, 9.5%) and unknown =3 (14.3%). Median (IQR) hemoglobin was 9.8 (8.5-11.4) g/dl and 11 (52.3%) patients had hemoglobin <10 g/dl. Ferritin was 494.0 (136.0-850.5) ng/ml and TSAT 19.9 % (13.3-26.0). 19 (90.5%) patients were receiving IV iron therapy. Median (IQR) IV iron administered in the previous 6 and 12 months before death was 800 (300-1250) mg and 1500 (650-2175) mg, respectively. All patients were on ESA therapy, median (IQR) dose 5000 (3000-9000) UI/week and erythropoietin resistance index was 9.6 (4.2-16.6). Median (IQR) liver iron content determined by atomic absorption was 42.5 (22.9-69.7) µmol/g. 9 patients (42.9%) had normal LIC (<36 μmol/g), while the remainder had mild to moderate overload. Median (IQR) Scheuer grade was 2 (1-3) and 13 (62%) of liver biopsies had increased (Scheuer grade > 1) iron deposition at histology. Median (IQR) grade of Perls staining in the bone marrow was 3 (3-4) and 9 (45%) had increased (Gale’s grade >3) iron content in the bone marrow. Iron semi-quantitative scores in liver and bone marrow had strong positive correlation (r=0.71, p<0.001). There was a strong positive correlation between LIC and ferritin (r=0.86, p < 0.001) and also TSAT (r=0.56, n=16, p=0.02). Hemoglobin was negatively associated with LIC (r= -0.46, p=0.04), and with iron content in the bone marrow (p=0.04). LIC did not associate with ESA dose, C-reactive protein, dialysis vintage or other clinical parameters. There was no statistically significant association between the dose of IV iron administered in the previous 6 and 12 months with LIC, ferritin,TSAT or iron scores in bone marrow and liver. Conclusion In these HD patients, there was biochemical and histological evidence of iron accumulation in liver and bone marrow. Ferritin and TSAT showed strong correlation with iron deposits, but none was found with the dose of IV iron administered. In this study, anemia severity was associated with higher degree of iron storage both in the liver and bone marrow, suggesting a multilevel blocking mechanism of iron’s utilization.


2020 ◽  
Vol 35 (6) ◽  
pp. 946-954
Author(s):  
Jürgen Floege ◽  
Felix Funk ◽  
Markus Ketteler ◽  
Anjay Rastogi ◽  
Sebastian Walpen ◽  
...  

Abstract Background The iron-based phosphate binders, sucroferric oxyhydroxide (SFOH) and ferric citrate (FC), effectively lower serum phosphorus in clinical studies, but gastrointestinal iron absorption from these agents appears to differ. We compared iron uptake and tissue accumulation during treatment with SFOH or FC using experimental rat models. Methods Iron uptake was evaluated during an 8-h period following oral administration of SFOH, FC, ferrous sulphate (oral iron supplement) or control (methylcellulose vehicle) in rat models of anaemia, iron overload and inflammation. A 13-week study evaluated the effects of SFOH and FC on iron accumulation in different organs. Results In the pharmacokinetic experiments, there was a minimal increase in serum iron with SFOH versus control during the 8-h post-treatment period in the iron overload and inflammation rat models, whereas a moderate increase was observed in the anaemia model. Significantly greater increases (P < 0.05) in serum iron were observed with FC versus SFOH in the rat models of anaemia and inflammation. In the 13-week iron accumulation study, total liver iron content was significantly higher in rats receiving FC versus SFOH (P < 0.01), whereas liver iron content did not differ between rats in the SFOH and control groups. Conclusions Iron uptake was higher from FC versus SFOH following a single dose in anaemia, iron overload and inflammation rat models and 13 weeks of treatment in normal rats. These observations likely relate to different physicochemical properties of SFOH and FC and suggest distinct mechanisms of iron absorption from these two phosphate binders.


2019 ◽  
Vol 44 (9) ◽  
pp. 3058-3068 ◽  
Author(s):  
Juan S. Calle-Toro ◽  
Christian A. Barrera ◽  
Dmitry Khrichenko ◽  
Hansel J. Otero ◽  
Suraj D. Serai

Hematology ◽  
2003 ◽  
Vol 8 (6) ◽  
pp. 429-432 ◽  
Author(s):  
Pradyumna D. Phatak ◽  
James C. Barton

2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Joel Marmur ◽  
Soheir Beshara ◽  
Gösta Eggertsen ◽  
Liselotte Onelöv ◽  
Nils Albiin ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3201-3201
Author(s):  
Emanuel Necas ◽  
Martin Vokurka ◽  
Jan Krijt

Abstract A member of the lipocalin family of proteins, NGAL/24p3, was demonstrated to bind iron and was suggested to participate in a non-transferrin dependent iron transport mechanism capable to deliver iron to the cytoplasm (Kaplan 2002, Yang et al. 2003). Therefore, we have studied mRNA for NGAL/24p3 levels in the liver tissue during its loading with iron released from senescent and damaged red blood cells. Red blood cell hemolysis was induced in mice by administration of phenylhydrazine (PHZ). Suppression of iron reutilization for erythropoiesis was achieved by a total body sublethal irradiation (5 Gy). Samples of liver tissue were collected 16 hrs or 48 hrs after PHZ and 40 hrs after irradiation. Combined treatment consisted from irradiation followed by PHZ administration 40 hrs later. The irradiation suppressed 24 hrs incorporation of 59Fe into blood from 46,5 % in controls to 1.2 % in irradiated mice, indicating a significant suppression of erythropoiesis. PHZ administration alone decreased hematocrit from 44.7 % to 38.7 %, reflecting degree of the red blood cell hemolysis. The combined treatment by irradiation and PHZ resulted in the elevation of the liver iron content from 43.8 to 106.7 micrograms/g wet tissue 16 hours after PHZ, indicating a significant loading of the liver tissue with iron. All these treatments increased mRNA for NGAL/24p3 levels as determined by real-time PCR, significantly. After the combined treatment the increase reached almost three orders of magnitude. We further compared the response of NGAL/24p3 mRNA to the response of hepcidin and transferrin-1 receptor (TfR-1) mRNAs, both known to be sensitive to the liver iron content. Hepcidin mRNA increased significantly after the treatment with irradiation, PHZ, or combination of irradiation and PHZ but the increase was less pronounced compared to that of NGAL/24p3 mRNA. TfR-1 mRNA significantly decreased 48 hours after the combined treatment only. As an indicator of the acute phase response, the mRNA for interleukin-6 was determined and it did not change after the treatments used. The results demonstrate that mRNA for the putative iron transport molecule NGAL/24p3 was strongly upregulated by experimental maneuvers that lead to accumulation of iron in the liver tissue.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3825-3825
Author(s):  
Nelson Hamerschlak ◽  
Laercio Rosemberg ◽  
Alexandre Parma ◽  
Fernanda F. Assir ◽  
Frederico R. Moreira ◽  
...  

Abstract Magnetic Ressonance Imaging (MRI) using T2 star (T2*) tecnique appears to be a very useful method for monitoring iron overload and iron chelation therapy in thalassaemia. In Brazil, we have around 400 thalassaemic major patients all over the country. They were treated with hipertransfusion protocols and desferroxamine and/or deferiprone chelation. We developed a cooperative program with the Brazilian Thalassaemic Patients Association (ABRASTA) in order to developT2* tecnique in Brazil to submit brazilian patients to an annual iron overload monitoring process with MRI.. We performed the magnetic ressonance T2* using GE equipment (GE, Milwaukee USA), with validation to chemical estimation of iron in patients undergoing liver biopsy. Until now, 60 patients were scanned, median age=23,2 (12–54); gender: 18 male (30%) and 42 female (70%). The median ferritin levels were 2030 ng/ml (Q1=1466; Q3=3296). As other authors described before, there was a curvilinear inverse correlation between iron concentration by biopsy, liver T2*(r=0,92) and also there were a correlation with ferritin levels. We also correlated myocardial iron measured by T2* with ventricular function.. As miocardial iron increased, there was a progressive decline in ejection fraction and no significant correlation was found between miocardial T2* and the ferritin levels. Liver iron content can be predicted by ferritin levels. On the other hand, cardiac disfunction is the most important cause of mortality among thalassaemic patients. Since Miocardio iron content cannot be predicted from serum ferritin or liver iron, and ventricular function can only detect those with advance disease, intensification and combination of chelation therapy, guided by T2* MRI tecnique should reduce mortality from the reversible cardiomyopathy among thalassaemic patients.


Sign in / Sign up

Export Citation Format

Share Document