On equilibria in finite games

1979 ◽  
Vol 8 (2) ◽  
pp. 65-79 ◽  
Author(s):  
V. Bubelis
Keyword(s):  
2020 ◽  
Vol 11 (1) ◽  
pp. 127-134
Author(s):  
Konstantin Kudryavtsev ◽  
Ustav Malkov

AbstractThe paper proposes the concept of a weak Berge equilibrium. Unlike the Berge equilibrium, the moral basis of this equilibrium is the Hippocratic Oath “First do no harm”. On the other hand, any Berge equilibrium is a weak Berge equilibrium. But, there are weak Berge equilibria, which are not the Berge equilibria. The properties of the weak Berge equilibrium have been investigated. The existence of the weak Berge equilibrium in mixed strategies has been established for finite games. The weak Berge equilibria for finite three-person non-cooperative games are computed.


Episteme ◽  
2011 ◽  
Vol 8 (3) ◽  
pp. 248-261 ◽  
Author(s):  
Ken Binmore

AbstractRobert Aumann argues that common knowledge of rationality implies backward induction in finite games of perfect information. I have argued that it does not. A literature now exists in which various formal arguments are offered in support of both positions. This paper argues that Aumann's claim can be justified if knowledge is suitably reinterpreted.


2020 ◽  
Vol 15 (1) ◽  
pp. 159-197 ◽  
Author(s):  
Bhaskar Dutta ◽  
Hannu Vartiainen

Farsighted formulations of coalitional formation, for instance, by Harsanyi and Ray and Vohra, have typically been based on the von Neumann–Morgenstern stable set. These farsighted stable sets use a notion of indirect dominance in which an outcome can be dominated by a chain of coalitional “moves” in which each coalition that is involved in the sequence eventually stands to gain. Dutta and Vohra point out that these solution concepts do not require coalitions to make optimal moves. Hence, these solution concepts can yield unreasonable predictions. Dutta and Vohra restricted coalitions to hold common, history‐independent expectations that incorporate optimality regarding the continuation path. This paper extends the Dutta–Vohra analysis by allowing for history‐dependent expectations. The paper provides characterization results for two solution concepts that correspond to two versions of optimality. It demonstrates the power of history dependence by establishing nonemptyness results for all finite games as well as transferable utility partition function games. The paper also provides partial comparisons of the solution concepts to other solutions.


Author(s):  
Hans Peters
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document