Subnormal structure of two-dimensional linear groups over local rings

1983 ◽  
Vol 22 (6) ◽  
pp. 502-506 ◽  
Author(s):  
S. Tazhetdinov
1969 ◽  
Vol 21 ◽  
pp. 106-135 ◽  
Author(s):  
Norbert H. J. Lacroix

The problem of classifying the normal subgroups of the general linear group over a field was solved in the general case by Dieudonné (see 2 and 3). If we consider the problem over a ring, it is trivial to see that there will be more normal subgroups than in the field case. Klingenberg (4) has investigated the situation over a local ring and has shown that they are classified by certain congruence groups which are determined by the ideals in the ring.Klingenberg's solution roughly goes as follows. To a given ideal , attach certain congruence groups and . Next, assign a certain ideal (called the order) to a given subgroup G. The main result states that if G is normal with order a, then ≧ G ≧ , that is, G satisfies the so-called ladder relation at ; conversely, if G satisfies the ladder relation at , then G is normal and has order .


2017 ◽  
Vol 291 (2-3) ◽  
pp. 245-263 ◽  
Author(s):  
Maria Alberich-Carramiñana ◽  
Josep Àlvarez Montaner ◽  
Ferran Dachs-Cadefau

Author(s):  
L. N. Vaserstein

Let A be an associative ring with 1. For any natural number n, let GLnA denote the group of invertible n by n matrices over A, and let EnA be the subgroup generated by all elementary matrices ai, j, where aεA and 1 ≤ i ≡ j ≤ n. For any (two-sided) ideal B of A, let GLnB be the kernel of the canonical homomorphism GLnA→GLn(A/B) and Gn(A, B) the inverse image of the centre of GLn(A/B) (when n > 1, the centre consists of scalar matrices over the centre of the ring A/B). Let EnB denote the subgroup of GLnB generated by its elementary matrices, and let En(A, B) be the normal subgroup of EnA generated by EnB (when n > 2, the group GLn(A, B) is generated by matrices of the form ai, jbi, j(−a)i, j with aA, b in B, i ≡ j, see [7]). In particuler,is the centre of GLnA


2015 ◽  
Vol 9 ◽  
pp. 109-114 ◽  
Author(s):  
Shaojun Dai ◽  
Jing Chen ◽  
Zhenzhen Song

1991 ◽  
Vol 109 (2) ◽  
pp. 287-297 ◽  
Author(s):  
Yu Chen

Let GL2(R) be the general linear group of 2 × 2 invertible matrices in M2(R) over a commutative ring R with 1 and SL2(R) be the special linear group consisting of 2 × 2 matrices over R with determinant 1. In this paper we determine the homomorphisms from GL2 and SL2, as well as their projective groups, over Laurent polynomial rings to those groups over Gaussian domains, i.e. unique factorization domains (cf. Theorems 1, 2, 3 below). We also consider more generally the homomorphisms of non-projective groups over commutative rings containing a field which are generated by their units (cf. Theorems 4 and 5). So far the homomorphisms of two-dimensional linear groups over commutative rings have only been studied in some specific cases. Landin and Reiner[7] obtained the automorphisms of GL2(R), where R is a Euclidean domain generated by its units. When R is a type of generalized Euclidean domain with a degree function and with units of R and 0 forming a field, Cohn[3] described the automorphisms of GL2(R). Later, Cohn[4] applied his methods to the case of certain rings of quadratic integers. Dull[6] has considered the automorphisms of GL2(R) and SL2(R), along with their projective groups, provided that R is a GE-ring and 2 is a unit in R. McDonald [9] examined the automorphisms of GL2(R) when R has a large unit group. The most recent work of which we are aware is that of Li and Ren[8] where the automorphisms of E2(R) and GE2(R) were determined for any commutative ring R in which 2, 3 and 5 are units.


Sign in / Sign up

Export Citation Format

Share Document