Systematic methodology for the design of a flexible keel for energy-storing prosthetic feet

2001 ◽  
Vol 39 (1) ◽  
pp. 56-64 ◽  
Author(s):  
T. S. Jang ◽  
J. J. Lee ◽  
D. H. Lee ◽  
Y. S. Yoon
2020 ◽  
pp. 002188632098271
Author(s):  
Denny Gioia

The Journal of Applied Behavioral Science is in the enviable position of being a go-to journal for many readers seeking useable insights for solving practical problems in managing modern organizations. A perennial source of such knowledge has been case studies, but case studies have been treated as questionable sources of widely applicable knowledge because they have been assumed to be idiosyncratic and to lack adequate “scientific” rigor. In this brief article, I argue for using a methodological approach to studying single cases that addresses both these thorny problems.


2021 ◽  
Vol 104 ◽  
pp. 105361
Author(s):  
Melissa Pineda-Pinto ◽  
Christian A. Nygaard ◽  
Manoj Chandrabose ◽  
Niki Frantzeskaki

1988 ◽  
Vol 32 (17) ◽  
pp. 1179-1182 ◽  
Author(s):  
P. Jay Merkle ◽  
Douglas B. Beaudet ◽  
Robert C. Williges ◽  
David W. Herlong ◽  
Beverly H. Williges

This paper describes a systematic methodology for selecting independent variables to be considered in large-scale research problems. Five specific procedures including brainstorming, prototype interface representation, feasibility/relevance analyses, structured literature reviews, and user subjective ratings are evaluated and incorporated into an integrated strategy. This methodology is demonstrated in the context of designing the user interface for a telephone-based information inquiry system. The procedure was successful in reducing an initial set of 95 independent variables to a subset of 19 factors that warrant subsequent detailed analysis. These results are discussed in terms of a comprehensive sequential research methodology useful for investigating human factors problems.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Emeka Eyisi ◽  
Zhenkai Zhang ◽  
Xenofon Koutsoukos ◽  
Joseph Porter ◽  
Gabor Karsai ◽  
...  

The systematic design of automotive control applications is a challenging problem due to lack of understanding of the complex and tight interactions that often manifest during the integration of components from the control design phase with the components from software generation and deployment on actual platform/network. In order to address this challenge, we present a systematic methodology and a toolchain using well-defined models to integrate components from various design phases with specific emphasis on restricting the complex interactions that manifest during integration such as timing, deployment, and quantization. We present an experimental platform for the evaluation and testing of the design process. The approach is applied to the development of an adaptive cruise control, and we present experimental results that demonstrate the efficacy of the approach.


2018 ◽  
Vol 62 ◽  
pp. 349-354 ◽  
Author(s):  
Cody L. McDonald ◽  
Patricia A. Kramer ◽  
Sara J. Morgan ◽  
Elizabeth G. Halsne ◽  
Sarah M. Cheever ◽  
...  

2016 ◽  
Vol 27 (12) ◽  
pp. 3397-3411 ◽  
Author(s):  
Bo Fang ◽  
Karthik Pattabiraman ◽  
Matei Ripeanu ◽  
Sudhanva Gurumurthi

2012 ◽  
Vol 36 (2) ◽  
pp. 203-216 ◽  
Author(s):  
Edward Schreiber Neumann ◽  
Kartheek Yalamanchili ◽  
Justin Brink ◽  
Joon S Lee

Background: Knowledge of transtibial residual limb force and moment loading during gait can be clinically useful. The research question was whether a transducer attached between the socket and pylon can be used to detect differences in loading patterns created by prosthetic feet of different design and different walking activities in real-world environments outside the gait lab. Objectives: To develop methods for obtaining, processing, analyzing and interpreting transducer measurements and examining their clinical usefulness. Study Design: Case series design. Methods: A convenience sample of four K3-K4 transtibial amputees and a wireless tri-axial transducer mounted distal to the socket. Activities included self-selected comfortable speed walking, and ascending and descending ramps and steps. Measurements taken about three orthogonal axes were processed to produce plots of normalized resultant force versus normalized resultant moment. Within-subject differences in peak resultant forces and moments were tested. Results: Loading patterns between feet and subjects and among the activities were distinctly different. Optimal loading of peak resultant forces tentatively might occur around 25% and 69% to73% of stance during self-selected comfortable walking. Ascending and descending ramps is useful for examining heel and forefoot response. Conclusions: Force-moment plots obtained from transducer data may assist clinical decision making. Clinical relevance A pylon-mounted transducer distal to the socket reveals the moments and forces transmitted to the residual limb and can be used to evaluate the loading patterns on the residual limb associated with different foot designs and different everyday activities outside the gait lab.


Author(s):  
Irem Y. Tumer ◽  
Kristin L. Wood ◽  
Ilene J. Busch-Vishniac

Abstract Part production requires constant monitoring to assure the effective manufacturing of high-quality components. The choice of monitoring methods can become a crucial factor in the decisions made during and prior to manufacturing. In an ideal world, designers and manufacturers will work together to interpret manufacturing and part data to assure the elimination of faults in manufacturing. However, manufacturing still lacks mathematically robust means of interpreting the manufacturing data so that a channel of communication can be established between design and manufacturing. To address part production concerns, we present a systematic methodology to interpret manufacturing data based on signals from manufacturing (e.g., tool vibrations, part surface deviations). These signals are assumed to contain a fingerprint of the manufacturing condition. The method presented in this paper is based on a mathematical transform to decompose the signals into their significant modes and monitor their changes over time. The methodology is meant to help designers and manufacturers make informed decisions about a machine and/or part condition. An example from a milling process is used to illustrate the method’s details.


Sign in / Sign up

Export Citation Format

Share Document