First- and second-order integral functionals of the calculus of variations which exhibit the Lavrentiev phenomenon

1997 ◽  
Vol 3 (4) ◽  
pp. 565-588 ◽  
Author(s):  
A. V. Sarychev
1999 ◽  
Vol 351 (9) ◽  
pp. 3687-3711 ◽  
Author(s):  
Mohammed Moussaoui ◽  
Alberto Seeger

1927 ◽  
Vol 46 ◽  
pp. 126-135 ◽  
Author(s):  
E. T. Copson

A partial differential equation of physics may be defined as a linear second-order equation which is derivable from a Hamiltonian Principle by means of the methods of the Calculus of Variations. This principle states that the actual course of events in a physical problem is such that it gives to a certain integral a stationary value.


2020 ◽  
Vol 18 (1) ◽  
pp. 1-9
Author(s):  
Carlo Mariconda ◽  
Giulia Treu

Abstract We consider the classical functional of the Calculus of Variations of the form $$\begin{array}{} \displaystyle I(u)=\int\limits_{{\it\Omega}}F(x, u(x), \nabla u(x))\,dx, \end{array}$$ where Ω is a bounded open subset of ℝn and F : Ω × ℝ × ℝn → ℝ is a Carathéodory convex function; the admissible functions u coincide with a prescribed Lipschitz function ϕ on ∂Ω. We formulate some conditions under which a given function in ϕ + $\begin{array}{} \displaystyle W^{1,p}_0 \end{array}$(Ω) with I(u) < +∞ can be approximated in the W1,p norm and in energy by a sequence of smooth functions that coincide with ϕ on ∂Ω. As a particular case we obtain that the Lavrentiev phenomenon does not occur when F(x, u, ξ) = f(x, u) + h(x, ξ) is convex and x ↦ F(x, 0, 0) is sufficiently smooth.


Sign in / Sign up

Export Citation Format

Share Document