Asymptotic theory for estimating the parameters of a Lévy process

1982 ◽  
Vol 34 (2) ◽  
pp. 259-280 ◽  
Author(s):  
Michael G. Akritas
Author(s):  
Valentin Courgeau ◽  
Almut E. D. Veraart

AbstractWe consider the problem of modelling restricted interactions between continuously-observed time series as given by a known static graph (or network) structure. For this purpose, we define a parametric multivariate Graph Ornstein-Uhlenbeck (GrOU) process driven by a general Lévy process to study the momentum and network effects amongst nodes, effects that quantify the impact of a node on itself and that of its neighbours, respectively. We derive the maximum likelihood estimators (MLEs) and their usual properties (existence, uniqueness and efficiency) along with their asymptotic normality and consistency. Additionally, an Adaptive Lasso approach, or a penalised likelihood scheme, infers both the graph structure along with the GrOU parameters concurrently and is shown to satisfy similar properties. Finally, we show that the asymptotic theory extends to the case when stochastic volatility modulation of the driving Lévy process is considered.


2014 ◽  
Vol 352 (10) ◽  
pp. 859-864 ◽  
Author(s):  
Arturo Kohatsu-Higa ◽  
Eulalia Nualart ◽  
Ngoc Khue Tran
Keyword(s):  

2007 ◽  
Vol 17 (1) ◽  
pp. 156-180 ◽  
Author(s):  
Florin Avram ◽  
Zbigniew Palmowski ◽  
Martijn R. Pistorius

2014 ◽  
Vol 46 (3) ◽  
pp. 846-877 ◽  
Author(s):  
Vicky Fasen

We consider a multivariate continuous-time ARMA (MCARMA) process sampled at a high-frequency time grid {hn, 2hn,…, nhn}, where hn ↓ 0 and nhn → ∞ as n → ∞, or at a constant time grid where hn = h. For this model, we present the asymptotic behavior of the properly normalized partial sum to a multivariate stable or a multivariate normal random vector depending on the domain of attraction of the driving Lévy process. Furthermore, we derive the asymptotic behavior of the sample variance. In the case of finite second moments of the driving Lévy process the sample variance is a consistent estimator. Moreover, we embed the MCARMA process in a cointegrated model. For this model, we propose a parameter estimator and derive its asymptotic behavior. The results are given for more general processes than MCARMA processes and contain some asymptotic properties of stochastic integrals.


2009 ◽  
Vol 46 (02) ◽  
pp. 542-558 ◽  
Author(s):  
E. J. Baurdoux

Chiu and Yin (2005) found the Laplace transform of the last time a spectrally negative Lévy process, which drifts to ∞, is below some level. The main motivation for the study of this random time stems from risk theory: what is the last time the risk process, modeled by a spectrally negative Lévy process drifting to ∞, is 0? In this paper we extend the result of Chiu and Yin, and we derive the Laplace transform of the last time, before an independent, exponentially distributed time, that a spectrally negative Lévy process (without any further conditions) exceeds (upwards or downwards) or hits a certain level. As an application, we extend a result found in Doney (1991).


2018 ◽  
Vol 34 (4) ◽  
pp. 397-408 ◽  
Author(s):  
Søren Asmussen ◽  
Jevgenijs Ivanovs

Sign in / Sign up

Export Citation Format

Share Document