Rooted tree analysis of the order conditions of row-type scheme for stochastic differential equations

1997 ◽  
Vol 37 (1) ◽  
pp. 43-66 ◽  
Author(s):  
Yoshio Komori ◽  
Taketomo Mitsui ◽  
Hiroshi Sugiura
Author(s):  
Adrien Laurent ◽  
Gilles Vilmart

AbstractWe derive a new methodology for the construction of high-order integrators for sampling the invariant measure of ergodic stochastic differential equations with dynamics constrained on a manifold. We obtain the order conditions for sampling the invariant measure for a class of Runge–Kutta methods applied to the constrained overdamped Langevin equation. The analysis is valid for arbitrarily high order and relies on an extension of the exotic aromatic Butcher-series formalism. To illustrate the methodology, a method of order two is introduced, and numerical experiments on the sphere, the torus and the special linear group confirm the theoretical findings.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Xuan Xin ◽  
Wendi Qin ◽  
Xiaohua Ding

AbstractIn this work, a version of continuous stage stochastic Runge–Kutta (CSSRK) methods is developed for stochastic differential equations (SDEs). First, a general order theory of these methods is established by the theory of stochastic B-series and multicolored rooted tree. Then the proposed CSSRK methods are applied to three special kinds of SDEs and the corresponding order conditions are derived. In particular, for the single integrand SDEs and SDEs with additive noise, we construct some specific CSSRK methods of high order. Moreover, it is proved that with the help of different numerical quadrature formulas, CSSRK methods can generate corresponding stochastic Runge–Kutta (SRK) methods which have the same order. Thus, some efficient SRK methods are induced. Finally, some numerical experiments are presented to demonstrate those theoretical results.


2012 ◽  
Author(s):  
Bo Jiang ◽  
Roger Brockett ◽  
Weibo Gong ◽  
Don Towsley

2020 ◽  
Vol 53 (2) ◽  
pp. 2220-2224
Author(s):  
William M. McEneaney ◽  
Hidehiro Kaise ◽  
Peter M. Dower ◽  
Ruobing Zhao

Sign in / Sign up

Export Citation Format

Share Document