Simple methods for dead-time and pile-up corrections in analytical gamma-ray spectrometry

1976 ◽  
Vol 31 (1) ◽  
pp. 235-257 ◽  
Author(s):  
S. Sterliński ◽  
W. Hammer
2019 ◽  
Vol 7 (2A) ◽  
Author(s):  
Guilherme Soares Zahn ◽  
Iberê Souza Ribeiro Jr ◽  
Frederico Antonio Genezini

In conventional gamma-ray spectrometry, the probability of pile-up effects is considered to be proportional to the dead-time, and is usually neglected for low dead-times (below 4-5%). In gamma-gamma coincidence spectrometry, though, while the dead time takes into account only events that are actually digitized, the pile-up effects are proportional to the actual gamma-ray detection rate in each detector, not only to the ones that trigger the coincidence gate. Thus, the pile-up corrections may not be so easy to assess as in single spectrometry systems. In this work, a system composed of two HPGe detectors coupled to a CAEN v1724 digitizer is studied. A 3kBq 60Co source was analyzed, both alone and in the presence of other radioactive sources (137Cs, 133Ba and 152Eu), and the resulting coincidence peak areas were compared to assess the effectiveness of two distinct corrections: a simple normalization by the live time of acquisition and the normalization by the count rate obtained using a pulse generator. The results obtained stress the need to use the pulse generator in this specific setup in order to get accurate results.


2020 ◽  
Vol 98 (9) ◽  
pp. 877-882
Author(s):  
S.M. Karabıdak ◽  
S. Kaya

Pile up and dead time are two important corrections in the analysis of X-ray and gamma ray spectra. The most important of these is pile up correction because these peaks do not really exist in the spectra; they only seem to exist. For this reason, these peaks affect both the qualitative and quantitative accuracy of the analysis. In addition, the pile up pulses forming the pile up peaks increase the background count in the spectrum. Companies that produce X-ray or gamma ray detector systems design pile up reject circuits and integrate them into detector systems to prevent these pulses. These circuits have time limitations because they are made up of electronic devices. For this reason, the pile up problem cannot be solved completely in these circuits. Therefore, mathematical models based on a statistical approach are needed. Such a model was developed in this study. A computer program based on this model was developed. This developed program has been applied to X-ray and gamma ray spectra. It has been shown that this model provides about 2% correction in the main peak regions and significantly reduces background counts.


2013 ◽  
Author(s):  
T. Petrovič ◽  
M. Vencelj ◽  
M. Lipoglavšek ◽  
R. Novak ◽  
D. Savran

Sign in / Sign up

Export Citation Format

Share Document