gamma ray detector
Recently Published Documents


TOTAL DOCUMENTS

342
(FIVE YEARS 37)

H-INDEX

23
(FIVE YEARS 3)

Author(s):  
Huaizhong Gao ◽  
Dongxin Yang ◽  
Jiaxing Wen ◽  
Xutao Zheng ◽  
Ming Zeng ◽  
...  
Keyword(s):  

2021 ◽  
Vol 8 ◽  
Author(s):  
Marta Freire ◽  
Gabriel Cañizares ◽  
Sara Echegoyen ◽  
Andrea Gonzalez-Montoro ◽  
Antonio J. Gonzalez

In the past years, the gamma-ray detector designs based on the monolithic crystals have demonstrated to be excellent candidates for the design of high-performance PET systems. The monolithic crystals allow to achieve the intrinsic detector resolutions well below state-of-the-art; to increase packing fraction thus, increasing the system sensitivity; and to improve lesion detectability at the edges of the scanner field of view (FOV) because of their intrinsic depth of interaction (DOI) capabilities. The bottleneck to translate to the clinical PET systems based on a large number of monolithic detectors is eventually the requirement of mechanically complex and time-consuming calibration processes. To mitigate this drawback, several methods have been already proposed, such as using non-physically collimated radioactive sources or implementing the neuronal networks (NN) algorithms trained with simulated data. In this work, we aimed to simplify and fasten a calibration process of the monolithic based systems. The Normal procedure consists of individually acquiring a 11 × 11 22Na source array for all the detectors composing the PET system and obtaining the calibration map for each module using a method based on the Voronoi diagrams. Two reducing time methodologies are presented: (i) TEST1, where the calibration map of one detector is estimated and shared among all others, and (ii) TEST2, where the calibration map is slightly modified for each module as a function of their detector uniformity map. The experimental data from a dedicated prostate PET system was used to compare the standard calibration procedure with both the proposed methods. A greater similarity was exhibited between the TEST2 methodology and the Normal procedure; obtaining spatial resolution variances within 0.1 mm error bars and count rate deviations as small as 0.2%. Moreover, the negligible reconstructed image differences (13% deviation at most in the contrast-to-noise ratio) and almost identical contrast values were reported. Therefore, this proposed method allows us to calibrate the PET systems based on the monolithic crystals reducing the calibration time by approximately 80% compared with the Normal procedure.


2021 ◽  
Vol 32 (9) ◽  
Author(s):  
Jia-Xing Wen ◽  
Xu-Tao Zheng ◽  
Jian-Dong Yu ◽  
Yue-Peng Che ◽  
Dong-Xin Yang ◽  
...  
Keyword(s):  

Author(s):  
Lei Pan ◽  
Praneeth Kandlakunta ◽  
Lei R. Cao

2021 ◽  
Vol 19 (6) ◽  
pp. 107-114
Author(s):  
Mohammed Yahya Hadi ◽  
Ali Hussein F. Alnasraui ◽  
Ali Adil Turki Aldalawi

The purpose of this paper is to determine the mass attenuation coefficient (μ/ρ), of a sample. In this work used (C16H32O2) fatty acid, exposed to gamma rays (γ), emitted from various sources 57Co, 133Ba, 22Na, 137Cs, 54Mn, and sCo with energies from 0.122 to 1.330 MeV. It exposes the compound to gamma rays and discloses the radiation force that passes through the sample, the rest of the gamma radiation attenuated. A NaI fluorescence detector (Tl) with an accuracy of 8.2% (at 662 kV) was used for the gamma ray detector beam. An advantage of using (μ/ρ) coefficient data can be obtained effective atomic numbers, atomic cross-section and effective electron densities.


2021 ◽  
Author(s):  
Felicia Barbato ◽  
Andrea Abba ◽  
Antonio Anastasio ◽  
GianCarlo Barbarino ◽  
Alfonso Boiano ◽  
...  

2021 ◽  
Vol 57 (7) ◽  
Author(s):  
B. De Canditiis ◽  
G. Duchêne ◽  
M. H. Sigward ◽  
M. Filliger ◽  
F. Didierjean ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252078
Author(s):  
Yadong Gao ◽  
Jiaming Li ◽  
Jichen Li ◽  
Linmao Liu

The PGNAA system for the cement measurement was simulated based on Monte Carlo method. The sizes of the moderator and reflector for the 14 MeV DT neutron generator were optimized for fast and thermal neutron outputs. The DT neutron generator was simulated at the pulse mode, and the gamma-ray detector was set as LaBr3(Ce) scintillator. The characteristic peaks of the major elements (Ca, Si, Al, Fe) can be identified from the gamma-ray spectra which induced at the different time intervals of the neutron radiation. For the different thicknesses of the cement sample the ratios of the gamma-ray peaks were observed, and the result showed that when the thickness was between 20 to 30 cm, the ratios became stable. With the ratios, we can calculate the iron modulus, silica modulus and lime saturation factor.


Author(s):  
Joseph Mangan ◽  
David Murphy ◽  
Rachel Dunwoody ◽  
Alexey Ulyanov ◽  
Joseph Thompson ◽  
...  

2021 ◽  
Vol 11 (10) ◽  
pp. 4707
Author(s):  
Takuya Kishimoto ◽  
Hanwool Woo ◽  
Ren Komatsu ◽  
Yusuke Tamura ◽  
Hideki Tomita ◽  
...  

In this paper, we propose a path planning method for the localization of radiation sources using a mobile robot equipped with an imaging gamma-ray detector, which has a field of view in all directions. The ability to detect and localize radiation sources is essential for ensuring nuclear safety, security, and surveillance. To enable the autonomous localization of radiation sources, the robot must have the ability to automatically determine the next location for gamma ray measurement instead of following a predefined path. The number of incident events is approximated to be the squared inverse proportional to the distance between the radiation source and the detector. Therefore, the closer the distance to the source, the shorter the time required to obtain the same radiation counts measured by the detector. Hence, the proposed method is designed to reduce this distance to a position where a sufficient number of gamma-ray events can be obtained; then, a path to surround the radiation sources is generated. The proposed method generates this path by performing principal component analysis based on the results obtained from previous measurements. Both simulations and actual experiments demonstrate that the proposed method can automatically generate a measurement path and accurately localize radiation sources.


Sign in / Sign up

Export Citation Format

Share Document