background count
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
◽  
Angel Abusleme ◽  
Thomas Adam ◽  
Shakeel Ahmad ◽  
Rizwan Ahmed ◽  
...  

Abstract JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day (cpd), therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz (i.e. ∼1 cpd accidental background) in the default fiducial volume, above an energy threshold of 0.7 MeV.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiangpeng Meng ◽  
Yuanyuan Liu ◽  
Bin Wu ◽  
Jianping Cheng ◽  
Li Wang ◽  
...  

To address the urgent need for the retrospective assessment of the health conditions of people with a history of appreciable radon exposure, a novel technique that directly measures the characteristic γ-rays emitted from Pb-210 in the living skull was developed. Since the first pioneering study in 1968, this technique has experienced continued advancement over more than half a century, where the limit of detection of Pb-210 is a common criterion to assess the performance of the measuring devices. However, researchers have defined the limit of detection in assorted ways, and the measurement conditions often greatly differ from study to study, both of which significantly challenge interstudy comparisons and obscure how various factors make their impacts. In this work, we reanalyze the reported results in the literature according to the minimum detectable activity (MDA) defined by Currie and investigate the effects of key elements therein. Firstly, we focus on the reported background count rates and analyze their dependence on detector’s energy resolution and active area. Secondly, we turn to the reported calibration factors and conduct analysis in the same manner. Thirdly, we calculate MDA for each study and monitor its dependence on the active area of detector and measurement duration. In the limit of the largest achievable active area (∼75000 mm2), it is found that the asymptotic MDA is approximately 6 (4) Bq and 15 (11) Bq under 30 (60) min measurement using NaI-CsI scintillator and HPGe semiconductor detectors, respectively. Finally, we discuss these asymptotic MDA in the context of estimated Pb-210 activity in the skull resulted from a hypothetical history of radon exposure.


OTO Open ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 2473974X2110271
Author(s):  
Mohammed Bahgat ◽  
Leon Lindsey ◽  
Paul Lindsey ◽  
Andrew Knight

Objective The identification of aerosol-generating procedures (AGPs) is important during the current SARS-CoV-2 pandemic due to aerosol-mediated virus transmission. Aerosol measurement during clinical procedures using particle counting may be confounded by variable natural background aerosol levels or limited by partial volume sampling. The study objective was to quantify any significant aerosol generated from simulated suction clearance procedures. Study Design Prospective quantification of aerosol generation during clinical suction simulation. Setting Clean chamber. Methods We created a clean environment for particle counting in a transparent neutralized polypropylene chamber. Air was passed through a HEPA 14 class filter to maintain a constant chamber inlet pressure. An optical particle counter was connected in line to the chamber exhaust vent to measure all of the vented particles. The chamber background count was 1 particle ≥0.3 µm per 15 minutes at a flow rate of 1 chamber air change per minute. We used this system to quantify very low aerosol counts generated from suction clearance of a silicone ear canal and at an open air-fluid interface. Results No clinically significant aerosol generation was found by particle counting of the whole chamber air volume during simulated suction procedures. Conclusion Simulated ear suction clearance and air-fluid interface suction does not generate any significant aerosol. It appears likely that any aerosol potentially generated at the suction tube tip is entrained by incoming air flow. This is the first study to quantify aerosols generated by suction in a controlled environment; further research is required to determine its clinical implications.


2021 ◽  
Author(s):  
Vladimir Gostilo ◽  
Serhii Pohuliai ◽  
Alexander Sokolov ◽  
Jari Joutsenvaara ◽  
Julia Puputti

<p>We present the results of measuring the gamma-ray background performance of Pyhasalmi mine, the deepest one in Europe. Two underground facilities in Lab 2 (1440 m) and Lab 5 (1410 m) were investigated. Based on measurements made in Lab 2 with a low-background HPGe spectrometer, we determined the integral gamma-ray background count rate in the energy range of 40 keV to 2.7 MeV to be 0.095 s<sup>–1</sup> kg<sup>–1</sup>. The minimum detectable activities of some natural and artificial nuclides were less than 0.071 Bq/kg (<sup>226</sup>Ra), 0.77 Bq/kg (<sup>40</sup>K) and 0.012 Bq/kg (<sup>137</sup>Cs). The specific activities of natural nuclides in the shotcrete covering the walls of the Lab 2 were higher than those in the rock: 100.3 Bq/kg (<sup>232</sup>Th), 161.7 Bq/kg (<sup>226</sup>Ra) and 1171 Bq/kg (<sup>40</sup>K) in the shotcrete covering and 47.6 Bq/kg (<sup>232</sup>Th), 83.1 Bq/kg (<sup>226</sup>Ra) and 1513 Bq/kg (<sup>40</sup>K) in the rock. The measurements showed that the gamma-ray background level in Lab 5 is significantly lower than that in Lab 2. The integrated gamma-ray background count rate for the energy range of 40 keV to 2.7 MeV was 0.028 s<sup>–1</sup> kg<sup>–1</sup> for Lab 5. Purging the measuring chamber of the gamma spectrometer with nitrogen gas at a rate of 0.15 L/h allowed to further improve this parameter to 0.021 s<sup>–1</sup> kg<sup>–1</sup>. In general, the results of this study confirm that the level and energy spectrum of background gamma radiation in the underground facility within the studied energy range is defined mainly by the composition of the walls of the Labs.</p><p> </p>


2020 ◽  
Vol 6 (2) ◽  
pp. 34-40
Author(s):  
G. B. Dhami ◽  
M. R. Bhatt ◽  
J. Khadayat ◽  
B. D. Joshi

We have reported the background radiation of urban and some other rural places of Kanchanpur district, Nepal. A simple portable Geiger Muller counter was used to quantify the level of overall background radiation by collecting data of different forty seven (including six urban and forty one rural places) places within the district. Our study reveals that the background radiation level of the study district is below the risk level. The maximum background count values 33.00±4.47 (Mahakali Zonal Hospital), 33.93 ± 1.16 (Mahakali School, Mahakali -01) and 31.30±3.97 CPM (Gha gaon) have been reported which is below the risk level. The observed values of radiation counts at all the sample places indicate that Kanchanpur district is radiation risk free.


2020 ◽  
Vol 98 (9) ◽  
pp. 877-882
Author(s):  
S.M. Karabıdak ◽  
S. Kaya

Pile up and dead time are two important corrections in the analysis of X-ray and gamma ray spectra. The most important of these is pile up correction because these peaks do not really exist in the spectra; they only seem to exist. For this reason, these peaks affect both the qualitative and quantitative accuracy of the analysis. In addition, the pile up pulses forming the pile up peaks increase the background count in the spectrum. Companies that produce X-ray or gamma ray detector systems design pile up reject circuits and integrate them into detector systems to prevent these pulses. These circuits have time limitations because they are made up of electronic devices. For this reason, the pile up problem cannot be solved completely in these circuits. Therefore, mathematical models based on a statistical approach are needed. Such a model was developed in this study. A computer program based on this model was developed. This developed program has been applied to X-ray and gamma ray spectra. It has been shown that this model provides about 2% correction in the main peak regions and significantly reduces background counts.


2020 ◽  
Author(s):  
Kei Wagatsuma ◽  
Muneyuki Sakata ◽  
Kenji Ishibashi ◽  
Akira Hirayama ◽  
Hirofumi Kawakami ◽  
...  

Abstract Background Silicon photomultiplier-positron emission tomography (SiPM-PET) has better sensitivity, spatial resolution, and timing resolution than photomultiplier tubes (PMT)-PET. The present study aimed to clarify the advantages of SiPM-PET in 18F-fluoro-2-deoxy-D-glucose ([18F]FDG) brain imaging in a head-to-head comparison with PMT-PET in phantom and clinical studies. Methods Image contrast was calculated from images acquired from a Hoffman 3D brain phantom and image noise and uniformity were calculated from pooled images acquired from a pool phantom using SiPM- and PMT-PET. Sequential PMT-PET and SiPM-PET [18F]FDG images were acquired over a period of 10 min from 22 individuals. All images were separately normalized to a standard [18F]FDG PET template, then mean standardized uptake values (SUVmean) and Z-score were calculated by MIMneuro and Cortex ID Suite, respectively. Results Image contrast, image noise, and uniformity in SiPM-PET changed 27.5%, -2.1%, and − 138.2% from PMT-PET, respectively. These physical indices of SiPM-PET satisfied the criteria for acceptable image quality published by the Japanese Society of Nuclear Medicine of > 55%, ≤ 15% and ≤ 0.0249, respectively. The residual background count was reduced with time-of-flight algorithm especially in SiPM-PET. The SUVmean using SiPM-PET was significantly higher than PMT-PET and did not correlate with a time delay. Z-scores were also significantly higher in images acquired from SiPM-PET (except for the bilateral posterior cingulate) than PMT-PET because the peak signal that was extracted by the calculation of Z-score in Cortex ID Suite was raised. Conclusions The better spatial and timing resolution, and sensitivity in SiPM-PET were contributed to better image contrast, image noise, and uniformity on brain [18F]FDG images. SiPM-PET offers better quality and more accurate quantitation of brain PET images. The SUVmean and Z-score in SiPM-PET was higher than PMT-PET. [18F]FDG images acquired using SiPM-PET will help to improve diagnostic outcomes based on the statistical image analysis because the SiPM-PET was more localized the distribution of glucose metabolism on Z-score maps.


2020 ◽  
Vol 5 (1) ◽  
pp. 78-86
Author(s):  
Bartholomeus Pasangka ◽  
Frederika Rambu Ngana

The general objective of this work was investigation of radioisotope distribution and accumulation center in mineral deposit at sub-district of Middle Kupang West Timor Island Indonesia. The purposes of research were: to map of radioisotope distribution in the mineral deposit, to estimate area of radioisotope accumulation center in the mineral deposit, to establish range of nuclear radiation counts in the center region of radioisotope content in mineral deposit. The general methods used in this research were observation, survey, mapping, analysis, and interpretation. Procedures detail of research consists of: observe and identify the potential region and plot gridding, calibrate equipment necessary, measure background count in around of survey location and nuclear radiation in the survey location, plot of three dimensions curve and contour after corrected by background count. Based on geology information or geology data (drilling data) three depth levels determined (about 20 m, 40 m and 60 m), Radiation powers were calculated for estimation of accumulation center of radioisotope in deposit mineral, and contour and three dimensions curves of radiation power of radioisotope in deposit mineral were plotted. Results: Based on three dimensional curves and contour map (radiation counts and radiation powers on three levels) of radioisotope in mineral deposit respectively was distributed on area 3.00 x 106 m2, and 1.56 x 104 m2. The interval of radiation counts of radioisotope in mineral deposit was 10 counts per minute-137 counts per minute. Keywords: Radiation, measurement, radioisotope, mineral, deposit


Sign in / Sign up

Export Citation Format

Share Document