Coat protein-mediated protection against plum pox virus in herbaceous model plants and transformation of apricot and plum

Euphytica ◽  
1994 ◽  
Vol 77 (1-2) ◽  
pp. 129-134 ◽  
Author(s):  
Artur da Câmara Machado ◽  
Hermann Katinger ◽  
Margit Laimer da Câmara Machado
1993 ◽  
pp. 85-92 ◽  
Author(s):  
M. Machado ◽  
A. Machado ◽  
V. Hanzer ◽  
H. Weiss ◽  
F. Regner ◽  
...  

1992 ◽  
pp. 203-210 ◽  
Author(s):  
A. da Câmara Machado ◽  
F. Regner ◽  
H. Steinkellner ◽  
D. Mattanovich ◽  
V. Hanzer ◽  
...  

2009 ◽  
Vol 22 (10) ◽  
pp. 1302-1311 ◽  
Author(s):  
V. Decroocq ◽  
B. Salvador ◽  
O. Sicard ◽  
M. Glasa ◽  
P. Cosson ◽  
...  

In Arabidopsis thaliana Columbia (Col-0) plants, the restriction of Tobacco etch virus (TEV) long-distance movement involves at least three dominant RTM (restricted TEV movement) genes named RTM1, RTM2, and RTM3. Previous work has established that, while the RTM-mediated resistance is also effective against other potyviruses, such as Plum pox virus (PPV) and Lettuce mosaic virus (LMV), some isolates of these viruses are able to overcome the RTM mechanism. In order to identify the viral determinant of this RTM-resistance breaking, the biological properties of recombinants between PPV-R, which systemically infects Col-0, and PPV-PSes, restricted by the RTM resistance, were evaluated. Recombinants that contain the PPV-R coat protein (CP) sequence in an RTM-restricted background are able to systemically infect Col-0. The use of recombinants carrying chimeric CP genes indicated that one or more PPV resistance-breaking determinants map to the 5′ half of the CP gene. In the case of LMV, sequencing of independent RTM-breaking variants recovered after serial passages of the LMV AF199 isolate on Col-0 plants revealed, in each case, amino acid changes in the CP N-terminal region, close to the DAG motif. Taken together, these findings demonstrate that the potyvirus CP N-terminal region determines the outcome of the interaction with the RTM-mediated resistance.


2004 ◽  
Vol 1 (1) ◽  
pp. 2-2
Author(s):  
Abou El- Nasr . ◽  
M. A, Dougdoug . ◽  
K. A., Hayam S. Abde . ◽  
Rehab A. Dawoud .

1997 ◽  
Vol 52 (5-6) ◽  
pp. 391-395
Author(s):  
Juan José López-Moya ◽  
Dionisio López-Abella ◽  
José-Ramón Díaz-Rúiz ◽  
Belén Martinez-Garcia ◽  
Richard Gáborjányi

Abstract Three Hungarian (No.2, 4 and 9), and a Moldavian (K) plum pox virus isolates were compared with a characterized Spanish isolate (5.15) by RT-PCR, ELISA, dot-blot and West­ern blot analysis. Monoclonal antibodies prepared against the external, intermediate and internal sequences of the coat protein of the Spanish isolate were able to differentiate the four isolates. Hungarian isolate No. 2 proved to be serologically identical to the Spanish isolate, while No. 4 showed appreciable differences and No. 9 could be recognized only by the monoclonal antibodies representing the intermedial and internal parts of the coat protein. K isolate showed a more distant relationship to other isolates. Our experiment provided the first demonstration of the presence of D type isolates in Hungary.


1992 ◽  
pp. 191-196 ◽  
Author(s):  
M. Ravelonandro ◽  
M. Monsion ◽  
P.-Y. Teycheney ◽  
R.P. Delbos ◽  
J. Dunez

Plant Disease ◽  
1998 ◽  
Vol 82 (12) ◽  
pp. 1405-1405 ◽  
Author(s):  
J. Staniulis ◽  
J. Stankiene ◽  
K. Sasnauskas ◽  
A. Dargeviciute

Plum pox (sharka) disease caused by plum pox potyvirus (PPV) is considered the most important virus disease of stone fruit trees in Europe and the Mediterranean region. Nearly all those countries that produce stone fruits are affected (3). The causal virus of the disease is a European Plant Protection Organization A2 quarantine pathogen. Symptoms of leaf mottling, diffuse chlorotic spots, rings, and vein banding of varied intensity characteristic for plum pox virus infection were observed in the plum (Prunus domestica) orchard tree collection of the Lithuanian Institute of Horticulture in Babtai in 1996. Presence of this virus in the diseased trees was confirmed by double antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA) with kits from BIOREBA (Reinach, Switzerland) and by polyclonal antibodies raised against a Moldavian isolate of PPV courtesy of T. D. Verderevskaya (Institute of Horticulture, Kishinev, Moldova). ELISAs with both sources of antiserum were positive for presence of PPV. Electron microscopy revealed the presence of potyvirus-like particles averaging 770 nm in extracts of mechanically inoculated plants of Chenopodium foetidum (chlorotic LL [local lesions]) and Pisum sativum cvs. Rainiai and Citron (mottling). For molecular diagnosis and characterization of this isolate, PPV-971, reverse transcription-polymerase chain reaction (RT-PCR) was employed. Total RNA from the leaves of infected pea was isolated as described (2). High molecular weight RNA selectively precipitated with 2 M lithium chloride was used for RT-PCR amplification of the coat protein encoding sequence by use of specific primers complementary to 5′ and 3′ parts of PPV coat protein L1 (GenBank accession no. X81081). Amino acid sequence comparison with GenBank data indicated 98.2% similarity with coat protein of PPV potyvirus isolated by E. Mais et al. (accession no. X81083) and 97.3% with PPV strain Rankovic (1).The specific DNA fragment, corresponding to predicted coat protein sequence size, was cloned into Escherichia coli pUC57 for DNA sequencing. Expression of the cloned sequence in bacteria and yeast expression systems is under investigation. The presence of PPV in plum trees in the 9-year-old collection at Babtai was confirmed by DAS-ELISA in 1997 and again in 1998. PPV was then detected in 20% of symptomatic trees of three cultivars. The Lithuanian PPV isolate reacted positively with “universal” Mab.5b and with a Mab (Mab.4DG5) specific for PPV-D. No reaction was observed with Mabs specific for PPV-M (Mab.AL), PPV-C (Mab.AC and Mab.TUV), and PPV-El Amar (Mab.EA24). PPV-971 seems to be a typical member of the less aggressive Dideron strain cluster of PPV (D. Boscia, personal communication). This is the first report of PPV in Lithuania and confirms the necessity for continuing the precautionary measures established in this country for indexing of nursery plum trees used for graft propagation. References: (1) S. Lain et al. Virus Res. 13:157, 1989. (2) J. Logemann et al. Anal. Biochem. 163:16, 1987. (3) M. Nemeth. OEPP/EPPO Bull. 24:525, 1994.


Sign in / Sign up

Export Citation Format

Share Document