Finitely generated pro-p-groups as Galois groups of maximalp-extensions of function fields over ℚ q

1996 ◽  
Vol 90 (1) ◽  
pp. 225-238 ◽  
Author(s):  
Christian U. Jensen ◽  
Alexander Prestel



2010 ◽  
Vol 88 (3) ◽  
pp. 301-312
Author(s):  
C. ÁLVAREZ-GARCÍA ◽  
G. VILLA-SALVADOR

AbstractLetE/kbe a function field over an infinite field of constants. Assume thatE/k(x) is a separable extension of degree greater than one such that there exists a place of degree one ofk(x) ramified inE. LetK/kbe a function field. We prove that there exist infinitely many nonisomorphic separable extensionsL/Ksuch that [L:K]=[E:k(x)] andAutkL=AutKL≅Autk(x)E.



1987 ◽  
Vol 30 (1) ◽  
pp. 23-39 ◽  
Author(s):  
Helmut Behr

Arithmetic subgroups of reductive algebraic groups over number fields are finitely presentable, but over global function fields this is not always true. All known exceptions are “small” groups, which means that either the rank of the algebraic group or the set S of the underlying S-arithmetic ring has to be small. There exists now a complete list of all such groups which are not finitely generated, whereas we onlyhave a conjecture which groups are finitely generated but not finitely presented.



1996 ◽  
Vol 38 (2) ◽  
pp. 137-145
Author(s):  
Sudesh K. Khanduja

Let K/Kobe a finitely generated field extension of transcendence degree 1. Let u0 be a valuation of Koand v a valuation of Kextending v0such that the residue field of vis a transcendental extension ofthe residue field k0of vo/such a prolongation vwill be called a residually transcendental prolongation of v0. Byan element with the uniqueness propertyfor (K, v)/(K0, v0) (or more briefly for v/v0)we mean an element / of Khaving u-valuation 0 which satisfies (i) the image of tunder the canonicalhomomorphism from the valuation ring of vonto the residue field of v(henceforth referred to as the v-residue ot t) is transcendental over ko; that is vcoincides with the Gaussian valuation on the subfield K0(t) defined by (ii) vis the only valuation of K (up to equivalence) extending the valuation .











Sign in / Sign up

Export Citation Format

Share Document