d-very-ample line bundles and embeddings of hilbert schemes of 0-cycles

1990 ◽  
Vol 68 (1) ◽  
pp. 337-341 ◽  
Author(s):  
Fabrizio Catanese ◽  
Lothar Gœttsche
Keyword(s):  

Author(s):  
Yalong Cao ◽  
Martijn Kool ◽  
Sergej Monavari

Abstract In 2008, Klemm–Pandharipande defined Gopakumar–Vafa type invariants of a Calabi–Yau 4-folds $X$ using Gromov–Witten theory. Recently, Cao–Maulik–Toda proposed a conjectural description of these invariants in terms of stable pair theory. When $X$ is the total space of the sum of two line bundles over a surface $S$, and all stable pairs are scheme theoretically supported on the zero section, we express stable pair invariants in terms of intersection numbers on Hilbert schemes of points on $S$. As an application, we obtain new verifications of the Cao–Maulik–Toda conjectures for low-degree curve classes and find connections to Carlsson–Okounkov numbers. Some of our verifications involve genus zero Gopakumar–Vafa type invariants recently determined in the context of the log-local principle by Bousseau–Brini–van Garrel. Finally, using the vertex formalism, we provide a few more verifications of the Cao–Maulik–Toda conjectures when thickened curves contribute and also for the case of local $\mathbb{P}^3$.



2020 ◽  
Vol Volume 4 ◽  
Author(s):  
Lothar Göttsche

We compute generating functions for elliptic genera with values in line bundles on Hilbert schemes of points on surfaces. As an application we also compute generating functions for elliptic genera with values in determinant line bundles on moduli spaces of sheaves on K3 surfaces.



2018 ◽  
Vol 2020 (10) ◽  
pp. 3130-3152
Author(s):  
Drew Johnson

Abstract We show how the “finite Quot scheme method” applied to Le Potier’s strange duality on del Pezzo surfaces leads to conjectures (valid for all smooth complex projective surfaces) relating two sets of universal power series on Hilbert schemes of points on surfaces: those for top Chern classes of tautological sheaves and those for Euler characteristics of line bundles. We have verified these predictions computationally for low order. We then give an analysis of these conjectures in small ranks. We also give a combinatorial proof of a formula predicted by our conjectures: the top Chern class of the tautological sheaf on $S^{[n]}$ associated to the structure sheaf of a point is equal to $(-1)^n$ times the nth Catalan number.



1994 ◽  
Vol 1 (2) ◽  
pp. 197-209 ◽  
Author(s):  
Hiroshi Honda ◽  
Hiroshi Takamatsu ◽  
Kyoohee Kim
Keyword(s):  


2020 ◽  
Vol 2020 (769) ◽  
pp. 87-119
Author(s):  
Sabin Cautis ◽  
Aaron D. Lauda ◽  
Joshua Sussan

AbstractRickard complexes in the context of categorified quantum groups can be used to construct braid group actions. We define and study certain natural deformations of these complexes which we call curved Rickard complexes. One application is to obtain deformations of link homologies which generalize those of Batson–Seed [3] [J. Batson and C. Seed, A link-splitting spectral sequence in Khovanov homology, Duke Math. J. 164 2015, 5, 801–841] and Gorsky–Hogancamp [E. Gorsky and M. Hogancamp, Hilbert schemes and y-ification of Khovanov–Rozansky homology, preprint 2017] to arbitrary representations/partitions. Another is to relate the deformed homology defined algebro-geometrically in [S. Cautis and J. Kamnitzer, Knot homology via derived categories of coherent sheaves IV, colored links, Quantum Topol. 8 2017, 2, 381–411] to categorified quantum groups (this was the original motivation for this paper).



2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Soheyla Feyzbakhsh ◽  
Chunyi Li

AbstractLet (X, H) be a polarized K3 surface with $$\mathrm {Pic}(X) = \mathbb {Z}H$$ Pic ( X ) = Z H , and let $$C\in |H|$$ C ∈ | H | be a smooth curve of genus g. We give an upper bound on the dimension of global sections of a semistable vector bundle on C. This allows us to compute the higher rank Clifford indices of C with high genus. In particular, when $$g\ge r^2\ge 4$$ g ≥ r 2 ≥ 4 , the rank r Clifford index of C can be computed by the restriction of Lazarsfeld–Mukai bundles on X corresponding to line bundles on the curve C. This is a generalization of the result by Green and Lazarsfeld for curves on K3 surfaces to higher rank vector bundles. We also apply the same method to the projective plane and show that the rank r Clifford index of a degree $$d(\ge 5)$$ d ( ≥ 5 ) smooth plane curve is $$d-4$$ d - 4 , which is the same as the Clifford index of the curve.



Author(s):  
Cristina Bertone ◽  
Francesca Cioffi

AbstractGiven a finite order ideal $${\mathcal {O}}$$ O in the polynomial ring $$K[x_1,\ldots , x_n]$$ K [ x 1 , … , x n ] over a field K, let $$\partial {\mathcal {O}}$$ ∂ O be the border of $${\mathcal {O}}$$ O and $${\mathcal {P}}_{\mathcal {O}}$$ P O the Pommaret basis of the ideal generated by the terms outside $${\mathcal {O}}$$ O . In the framework of reduction structures introduced by Ceria, Mora, Roggero in 2019, we investigate relations among $$\partial {\mathcal {O}}$$ ∂ O -marked sets (resp. bases) and $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked sets (resp. bases). We prove that a $$\partial {\mathcal {O}}$$ ∂ O -marked set B is a marked basis if and only if the $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked set P contained in B is a marked basis and generates the same ideal as B. Using a functorial description of these marked bases, as a byproduct we obtain that the affine schemes respectively parameterizing $$\partial {\mathcal {O}}$$ ∂ O -marked bases and $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked bases are isomorphic. We are able to describe this isomorphism as a projection that can be explicitly constructed without the use of Gröbner elimination techniques. In particular, we obtain a straightforward embedding of border schemes in affine spaces of lower dimension. Furthermore, we observe that Pommaret marked schemes give an open covering of Hilbert schemes parameterizing 0-dimensional schemes without any group actions. Several examples are given throughout the paper.



2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Marco Bertola

AbstractThe paper has two relatively distinct but connected goals; the first is to define the notion of Padé approximation of Weyl–Stiltjes transforms on an arbitrary compact Riemann surface of higher genus. The data consists of a contour in the Riemann surface and a measure on it, together with the additional datum of a local coordinate near a point and a divisor of degree g. The denominators of the resulting Padé-like approximation also satisfy an orthogonality relation and are sections of appropriate line bundles. A Riemann–Hilbert problem for a square matrix of rank two is shown to characterize these orthogonal sections, in a similar fashion to the ordinary orthogonal polynomial case. The second part extends this idea to explore its connection to integrable systems. The same data can be used to define a pairing between two sequences of line bundles. The locus in the deformation space where the pairing becomes degenerate for fixed degree coincides with the zeros of a “tau” function. We show how this tau function satisfies the Kadomtsev–Petviashvili hierarchy with respect to either deformation parameters, and a certain modification of the 2-Toda hierarchy when considering the whole sequence of tau functions. We also show how this construction is related to the Krichever construction of algebro-geometric solutions.



2021 ◽  
Vol 8 (1) ◽  
pp. 223-229
Author(s):  
Callum R. Brodie ◽  
Andrei Constantin ◽  
Rehan Deen ◽  
Andre Lukas

Abstract We show that the zeroth cohomology of effective line bundles on del Pezzo and Hirzebruch surfaces can always be computed in terms of a topological index.





Sign in / Sign up

Export Citation Format

Share Document