elliptic genera
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 20)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Jie Gu ◽  
Babak Haghighat ◽  
Albrecht Klemm ◽  
Kaiwen Sun ◽  
Xin Wang

Abstract Given the recent geometrical classification of 6d (1, 0) SCFTs, a major question is how to compute for this large class their elliptic genera. The latter encode the refined BPS spectrum of the SCFTs, which determines geometric invariants of the associated elliptic non-compact Calabi-Yau threefolds. In this paper we establish for all 6d (1, 0) SCFTs in the atomic classification blowup equations that fix these elliptic genera to large extent. The latter fall into two types: the unity and the vanishing blowup equations. For almost all rank one theories, we find unity blowup equations which determine the elliptic genera completely. We develop several techniques to compute elliptic genera and BPS invariants from the blowup equations, including a recursion formula with respect to the number of strings, a Weyl orbit expansion, a refined BPS expansion and an ϵ1, ϵ2 expansion. For higher-rank theories, we propose a gluing rule to obtain all their blowup equations based on those of rank one theories. For example, we explicitly give the elliptic blowup equations for the three higher-rank non-Higgsable clusters, ADE chain of −2 curves and conformal matter theories. We also give the toric construction for many elliptic non-compact Calabi- Yau threefolds which engineer 6d (1, 0) SCFTs with various matter representations.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Zhihao Duan ◽  
Kimyeong Lee ◽  
June Nahmgoong ◽  
Xin Wang

Abstract We study twisted circle compactification of 6d (2, 0) SCFTs to 5d $$ \mathcal{N} $$ N = 2 supersymmetric gauge theories with non-simply-laced gauge groups. We provide two complementary approaches towards the BPS partition functions, reflecting the 5d and 6d point of view respectively. The first is based on the blowup equations for the instanton partition function, from which in particular we determine explicitly the one-instanton contribution for all simple Lie groups. The second is based on the modular bootstrap program, and we propose a novel modular ansatz for the twisted elliptic genera that transform under the congruence subgroups Γ0(N) of SL(2, ℤ). We conjecture a vanishing bound for the refined Gopakumar-Vafa invariants of the genus one fibered Calabi-Yau threefolds, upon which one can determine the twisted elliptic genera recursively. We use our results to obtain the 6d Cardy formulas and find universal behaviour for all simple Lie groups. In addition, the Cardy formulas remain invariant under the twist once the normalization of the compact circle is taken into account.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Kimyeong Lee ◽  
June Nahmgoong

Abstract We explore the supersymmetric partition functions of 6d SCFTs on ℝ4 × T2 with non-vanishing charges for compatible global symmetries. We utilize the elliptic genera for self-dual strings and compute the free energy of 6d SCFTs in the Cardy limit. For a 6d (2,0) theory on N M5-brane, we obtain the free energy proportional to N3. We find that the origin of N3 comes from the condensation of the self-dual strings, whose total number is proportional to $$ \frac{N^3-N}{6} $$ N 3 − N 6 . We further extend our analysis to the general E-string theory and obtain its Cardy free energy.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Zhihao Duan ◽  
June Nahmgoong

Abstract We study elliptic genera of ADE-type M-strings in 6d (2,0) SCFTs from their modularity and explore the relation to topological string partition functions. We find a novel kinematical constraint that elliptic genera should follow, which determines elliptic genera at low base degrees and helps us to conjecture a vanishing bound for the refined Gopakumar-Vafa invariants of related geometries. Using this, we can bootstrap the elliptic genera to arbitrary base degree, including D/E-type theories for which explicit formulas are only partially known. We utilize our results to obtain the 6d Cardy formulas and the superconformal indices for (2,0) theories.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Joonho Kim ◽  
Seok Kim ◽  
Kimyeong Lee

Abstract We explore 6d (1, 0) superconformal field theories with SU(3) and SU(2) gauge symmetries which cascade after Higgsing to the E-string theory on a single M5 near an E8 wall. Specifically, we study the 2d $$ \mathcal{N} $$ N = (0, 4) gauge theories which describe self-dual strings of these 6d theories. The self-dual strings can be also viewed as instanton string solitons of 6d Yang-Mills theories. We find the 2d anomaly-free gauge theories for self-dual strings, amending the naive ADHM gauge theories which are anomalous, and calculate their elliptic genera. While these 2d theories respect the flavor symmetry of each 6d SCFT only partially, their elliptic genera manifest the symmetry fully as these functions as BPS index are invariant in strongly coupled IR limit. Our consistent 2d (0, 4) gauge theories also provide new insights on the non-linear sigma models for the instanton strings, providing novel UV completions of the small instanton singularities. Finally, we construct new 2d quiver gauge theories for the self-dual strings in 6d E-string theory for multiple M5-branes probing the E8 wall, and find their fully refined elliptic genera.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Seung-Joo Lee ◽  
Wolfgang Lerche ◽  
Guglielmo Lockhart ◽  
Timo Weigand

Abstract We investigate the interplay between the enumerative geometry of Calabi-Yau fourfolds with fluxes and the modularity of elliptic genera in four-dimensional string theories. We argue that certain contributions to the elliptic genus are given by derivatives of modular or quasi-modular forms, which may encode BPS invariants of Calabi-Yau or non-Calabi-Yau threefolds that are embedded in the given fourfold. As a result, the elliptic genus is only a quasi-Jacobi form, rather than a modular or quasi-modular one in the usual sense. This manifests itself as a holomorphic anomaly of the spectral flow symmetry, and in an elliptic holomorphic anomaly equation that maps between different flux sectors. We support our general considerations by a detailed study of examples, including non-critical strings in four dimensions.For the critical heterotic string, we explain how anomaly cancellation is restored due to the properties of the derivative sector. Essentially, while the modular sector of the elliptic genus takes care of anomaly cancellation involving the universal B-field, the quasi-Jacobi one accounts for additional B-fields that can be present.Thus once again, diverse mathematical ingredients, namely here the algebraic geometry of fourfolds, relative Gromow-Witten theory pertaining to flux backgrounds, and the modular properties of (quasi-)Jacobi forms, conspire in an intriguing manner precisely as required by stringy consistency.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Matteo Sacchi

Abstract We propose some new infra-red dualities for 2d$$ \mathcal{N} $$ N = (0, 2) theories. The first one relates a USp(2N) gauge theory with one antisymmetric chiral, four fundamental chirals and N Fermi singlets to a Landau-Ginzburg model of N Fermi and 6N chiral fields with cubic interactions. The second one relates SU(2) linear quiver gauge theories of arbitrary length N − 1 with the addition of N Fermi singlets for any non-negative integer N. They can be understood as a generalization of the duality between an SU(2) gauge theory with four fundamental chirals and a Landau-Ginzburg model of one Fermi and six chirals with a cubic interaction. We derive these dualities from already known 4d$$ \mathcal{N} $$ N = 1 dualities by compactifications on $$ {\mathbbm{S}}^2 $$ S 2 with suitable topological twists and we further test them by matching anomalies and elliptic genera. We also show how to derive them by iterative applications of some more fundamental dualities, in analogy with similar derivations for parent dualities in three and four dimensions.


Sign in / Sign up

Export Citation Format

Share Document