Fatigue crack initiation and strain-controlled fatigue of some high strength low alloy steels

1982 ◽  
Vol 13 (1) ◽  
pp. 59-72 ◽  
Author(s):  
Y. H. Kim ◽  
M. E. Fine
Author(s):  
Makoto Higuchi ◽  
Katsumi Sakaguchi

Low cycle fatigue life of structural materials in LWR plants decreases remarkably in elevated temperature water depending on strain rate, temperature, water chemistry and material properties. The maximum reduction rate in fatigue life for carbon and low alloy steels is over 100 in severe conditions. Fatigue life is composed of fatigue crack initiation life and consequent propagation life. It is important to know the proportion of crack initiation life to propagation life in water environment when developing a model to estimate fatigue crack initiation life. The beachmark imprinting method was used to monitor fatigue crack initiation and consequent propagation. Environmental test conditions varied widely from severely accelerated conditions of high temperature and dissolved oxygen to mild conditions of lower temperature and oxygen. Fatigue crack initiation life could be determined using the beachmark imprinting method for all test conditions. Based on obtained test results, the susceptibility of each parameter in NWC and the relationships between NWC/NW and environmental fatigue life correction factor Fen under various conditions are discussed, but a good relationship could not be detected due to widely scattered data and a model to predict fatigue crack initiation life could not be proposed.


1989 ◽  
Vol 11 (2) ◽  
pp. 121-125 ◽  
Author(s):  
H.-J. Spies ◽  
G. Pusch ◽  
C. Henkel ◽  
K. Röβler

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 145
Author(s):  
Yuki Ono ◽  
Halid Can Yıldırım ◽  
Koji Kinoshita ◽  
Alain Nussbaumer

This study aimed to identify the fatigue crack initiation site of high-frequency mechanical impact (HFMI)-treated high-strength steel welded joints subjected to high peak stresses; the impact of HFMI treatment residual stress relaxation being of particular interest. First, the compressive residual stresses induced by HFMI treatment and their changes due to applied high peak stresses were quantified using advanced measurement techniques. Then, several features of crack initiation sites according to levels of applied peak stresses were identified through fracture surface observation of failed specimens. The relaxation behavior was simulated with finite element (FE) analyses incorporating the experimentally characterized residual stress field, load cycles including high peak load, improved weld geometry and non-linear material behavior. With local strain and local mean stress after relaxation, fatigue damage assessments along the surface of the HFMI groove were performed using the Smith–Watson–Topper (SWT) parameter to identify the critical location and compared with actual crack initiation sites. The obtained results demonstrate the shift of the crack initiation most prone position along the surface of the HFMI groove, resulting from a combination of stress concentration and residual stress relaxation effect.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
O. K. Chopra ◽  
G. L. Stevens ◽  
R. Tregoning ◽  
A. S. Rao

The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Code) provides rules for the design of Class 1 components of nuclear power plants. However, the Code design curves do not address the effects of light water reactor (LWR) water environments. Existing fatigue strain-versus-life (ε–N) data illustrate significant effects of LWR water environments on the fatigue resistance of pressure vessel and piping steels. Extensive studies have been conducted at Argonne National Laboratory (Argonne) and elsewhere to investigate the effects of LWR environments on the fatigue life. This article summarizes the results of these studies. The existing fatigue ε–N data were evaluated to identify the various material, environmental, and loading conditions that influence the fatigue crack initiation; a methodology for estimating fatigue lives as a function of these parameters was developed. The effects were incorporated into the ASME Code Section III fatigue evaluations in terms of an environmental correction factor, Fen, which is the ratio of fatigue life in air at room temperature to the life in the LWR water environment at reactor operating temperatures. Available fatigue data were used to develop fatigue design curves for carbon and low-alloy steels, austenitic stainless steels (SSs), and nickel–chromium–iron (Ni–Cr–Fe) alloys and their weld metals. A review of the Code Section III fatigue adjustment factors of 2 and 20 is also presented, and the possible conservatism inherent in the choice is evaluated. A brief description of potential effects of neutron irradiation on fatigue crack initiation is presented.


1999 ◽  
Vol 121 (1) ◽  
pp. 49-60 ◽  
Author(s):  
O. K. Chopra ◽  
W. J. Shack

Recent test data illustrate potentially significant effects of light water reactor (LWR) coolant environments on the fatigue resistance of carbon and low-alloy steels. The crack initiation and crack growth characteristics of carbon and low-alloy steels in LWR environments are presented. Decreases in fatigue lives of these steels in high-dissolved-oxygen water are caused primarily by the effect of environment on growth of short cracks <100 μm in depth. The material and loading parameters that influence fatigue life in LWR environments are defined. Statistical models have been developed to estimate the fatigue lives of these steels in LWR environments, and design fatigue curves have been developed for carbon and low-alloy steel components in LWR environments. The significance of environmental effect on the current Code design curve is evaluated.


Sign in / Sign up

Export Citation Format

Share Document