On resemblance and recursive isomorphism types of bounded partial recursive functions

2000 ◽  
Vol 41 (2) ◽  
pp. 327-328
Author(s):  
N. V. Litvinov
1969 ◽  
Vol 34 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Louise Hay

Let q0, q1,… be a standard enumeration of all partial recursive functions of one variable. For each i, let wi = range qi and for any recursively enumerable (r.e.) set α, let θα = {n | wn = α}. If A is a class of r.e. sets, let θA = the index set of A = {n | wn ∈ A}. It is the purpose of this paper to classify the possible recursive isomorphism types of index sets of finite classes of r.e. sets. The main theorem will also provide an answer to the question left open in [2] concerning the possible double isomorphism types of pairs (θα, θβ) where α ⊂ β.


Author(s):  
David J. Lobina

Recursion, or the capacity of ‘self-reference’, has played a central role within mathematical approaches to understanding the nature of computation, from the general recursive functions of Alonzo Church to the partial recursive functions of Stephen C. Kleene and the production systems of Emil Post. Recursion has also played a significant role in the analysis and running of certain computational processes within computer science (viz., those with self-calls and deferred operations). Yet the relationship between the mathematical and computer versions of recursion is subtle and intricate. A recursively specified algorithm, for example, may well proceed iteratively if time and space constraints permit; but the nature of specific data structures—viz., recursive data structures—will also return a recursive solution as the most optimal process. In other words, the correspondence between recursive structures and recursive processes is not automatic; it needs to be demonstrated on a case-by-case basis.


1975 ◽  
Vol 20 (2) ◽  
pp. 146-158 ◽  
Author(s):  
P. Aczel

The notion of a recursive density type (R.D.T.) was introduced by Medvedev and developed by Pavlova (1961). More recently the algebra of R.D.T.'s was initiated by Gonshor and Rice (1969). The R.D.T.'s are equivalence classes of sets of integers, similar in many respects to the R.E.T.'s. They may both be thought of as effective analogues of the cardinal numbers. While the equivalence relationfor R.E.T.'s is defined in terms of partial recursive functions, that for R.D.T.'s may be characterized in terms of recursively bounded partial functions (see 4.22a).


Sign in / Sign up

Export Citation Format

Share Document