standard enumeration
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2002 ◽  
Vol 67 (2) ◽  
pp. 497-504
Author(s):  
Todd Hammond

Let {We}e∈ω be a standard enumeration of the recursively enumerable (r. e.) subsets of ω = {0, 1, 2, …}. The lattice of recursively enumerable sets, is the structure ({We}e∈ω, ∪, ∩). is the sublattice of consisting of the recursive sets.Suppose is a lattice of subsets of ω. ≡ is said to be a congruence relation on if ≡ is an equivalence relation on and if for all U, U′ ∈ and V, V ∈ , if U ≡ U′ and V ≡ V′ then U ∪ U′ ≡ V ∪ V′ and U ∩ U′ ≡ V ∩ V′. [U] = {V ∈ | V ≡ U} is the equivalence class of U. If ≡ is a congruence relation on , the elements of the quotient lattice / ≡ are the equivalence classes of ≡. [U] ∪ [V] is defined as [U ∪ V], and [U] ∩ [V] is defined as [U ∩ V].The quotient lattices of (or of some sublattice ) correspond naturally with the congruence relations which give rise to them, and in turn the congruence relations of sublattices of can be characterized in part by their computational complexity. The aim of the present paper is to characterize congruence relations in some of the most important complexity classes.



1999 ◽  
Vol 64 (4) ◽  
pp. 1403-1406 ◽  
Author(s):  
Todd Hammond

Let {We}e∈ω be a standard enumeration of the recursively enumerable (r.e.) subsets of ω = {0,1,2,…}. The lattice of recursively enumerable sets, , is the structure ({We}e∈ω,∪,∩). ≡ is a congruence relation on if ≡ is an equivalence relation on and if for all U, U′ ∈ and V, V′ ∈ , if U ≡ U′ and V ≡ V′, then U ∪ V ≡ U′ ∪ V′ and U ∩ V ≡ U′ ∩ V′. [U] = {V ∈ | V ≡ U} is the equivalence class of U. If ≡ is a congruence relation on , the elements of the quotient lattice / ≡ are the equivalence classes of ≡. [U] ∪ [V] is defined as [U ∪ V], and [U] ∩ [V] is defined as [U ∩ V]. We say that a congruence relation ≡ on is if {(i, j)| Wi ≡ Wj} is . Define =* by putting Wi, =* Wj if and only if (Wi − Wj)∪ (Wj − Wi) is finite. Then =* is a congruence relation. If D is any set, then we can define a congruence relation by putting Wi Wj if and only if Wi ∩ D =* Wj ∩D. By Hammond [2], a congruence relation ≡ ⊇ =* is if and only if ≡ is equal to for some set D.The Friedberg splitting theorem [1] asserts that if A is any recursively enumerable set, then there exist disjoint recursively enumerable sets A0 and A1 such that A = A0∪ A1 and such that for any recursively enumerable set B





1975 ◽  
Vol 40 (3) ◽  
pp. 398-400 ◽  
Author(s):  
Robert A. di Paola

This note is concerned with an aspect of the length of proof of formulas in recursively enumerable theories T adequate for recursive arithmetic. In particular, we consider the relative length of proof of formulas in the theories T and T(S), where F represents an r.e. set A in T and T(S) is the theory obtained from T by adjunction, as a new axiom, of a sentence S undecidable in T.Throughout the sequel T is a consistent, r.e. theory with standard formalization [7] in which all recursive functions of one variable are definable, and in which there is a binary formula x ≤ satisfying the well-known conditions [7]:Here is the constant term corresponding to the natural number n. Wn is the nth r.e. set in a standard enumeration of the r.e. sets. Also, we assume an a priori Gödel numbering of our formalism satisfying the usual conditions, so that all formulas are numbers ab initio.In the more common applications of the theorem below, if F is a k-ary formula of T, is a natural number that measures in some way the length of the shortest proof of in T.



1974 ◽  
Vol 39 (2) ◽  
pp. 209-224 ◽  
Author(s):  
Louise Hay

Let {Wk}k ≥ 0 be a standard enumeration of all recursively enumerable (r.e.) sets. If A is any class of r.e. sets, let θA denote the index set of A, i.e., θA = {k ∣ Wk ∈ A}. The one-one degrees of index sets form a partial order ℐ which is a proper subordering of the partial order of all one-one degrees. Denote by ⌀ the one-one degree of the empty set, and, if b is the one-one degree of θB, denote by the one-one degree of . Let . Let {Ym}m≥0 be the sequence of index sets of nonempty finite classes of finite sets (classified in [5] and independently, in [2]) and denote by am the one-one degree of Ym. As shown in [2], these degrees are complete at each level of the difference hierarchy generated by the r.e. sets. It was proved in [3] that, for each m ≥ 0,(a) am+1 and ām+1 are incomparable immediate successors of am and ām, and(b) .For m = 0, since Y0 = θ{⌀}, it follows from (a) that(c) .Hence it follows that(d) {⌀, , ao, ā0, a1, ā1 is an initial segment of ℐ.



1973 ◽  
Vol 38 (3) ◽  
pp. 446-452 ◽  
Author(s):  
Carl G. Jockusch ◽  
Robert I. Soare

A standard enumeration of the recursively enumerable (r.e.) sets is an acceptable numbering {Wn}n∈N of the r.e. sets in the sense of Rogers [5, p. 41], together with a 1:1 recursive function f with range In his quest for nonrecursive incomplete r.e. sets Post [4] constructed a hypersimple set Hf, relative to a fixed but unspecified standard enumeration f. Although it was later shown that hyper-simplicity does not guarantee incompleteness, the ironic possibility remained that Post's own particular hypersimple set might be incomplete. We settle the question by proving that H, may be either complete or incomplete depending upon which standard enumeration f is used. In contrast, D. A. Martin has shown [3] that Post's simple set S [4, p. 298] is complete for any standard enumeration. Furthermore, what most modern recursion theorists would regard as the “natural” construction of a hypersimple set (which we give in §1) is also complete for any standard enumeration.There are two conclusions to be drawn from these results. First, they substantiate the often repeated remark among recursion theorists that Post's hypersimple set construction is a precursor of priority constructions because priorities play a strong role, and because there is a great deal of “restraint” which tends to keep elements out of the set. Secondly, the results warn recursion theorists that more properties than might have been supposed depend upon which standard enumeration is chosen at the beginning of the construction of some r.e. set.



1972 ◽  
Vol 37 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Louise Hay

Let {Wi} be a standard enumeration of all recursively enumerable (r.e.) sets, and for any class A of r.e. sets, let θA denote the index set of A = {n ∣ Wn ∈ A}. (Clearly, .) In [1], the index sets of nonempty finite classes of finite sets were classified under one-one reducibility into an increasing sequence {Ym}, 0 ≤ m < ∞. In this paper we examine further properties of this sequence within the partial ordering of one-one degrees of index sets. The main results are as follows: (1) For each m, Ym < Ym + 1 and < Ym + 1; (2) Ym is incomparable to ; (3) Ym + 1 and ; are immediate successors (among index sets) of Ym and m; (4) the pair (Ym + 1, ) is a “least upper bound” for the pair (Ym, ) in the sense that any successor of both Ym and is ≥ Ym + 1or; (5) the pair (Ym, ) is a “greatest lower bound” for the pair (Ym + 1, ) in the sense that any predecessor of both Ym + 1 and is ≤ Ym or . Since and all Ym are in the bounded truth-table degree of K, this yields some local information about the one-one degrees of index sets which are “at the bottom” in the one-one ordering of index sets.



1969 ◽  
Vol 34 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Louise Hay

Let q0, q1,… be a standard enumeration of all partial recursive functions of one variable. For each i, let wi = range qi and for any recursively enumerable (r.e.) set α, let θα = {n | wn = α}. If A is a class of r.e. sets, let θA = the index set of A = {n | wn ∈ A}. It is the purpose of this paper to classify the possible recursive isomorphism types of index sets of finite classes of r.e. sets. The main theorem will also provide an answer to the question left open in [2] concerning the possible double isomorphism types of pairs (θα, θβ) where α ⊂ β.



Sign in / Sign up

Export Citation Format

Share Document