recursively enumerable sets
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 3)

H-INDEX

25
(FIVE YEARS 0)

Author(s):  
Artiom Alhazov ◽  
Rudolf Freund ◽  
Sergiu Ivanov ◽  
Sergey Verlan

AbstractCatalytic P systems are among the first variants of membrane systems ever considered in this area. This variant of systems also features some prominent computational complexity questions, and in particular the problem of using only one catalyst: is one catalyst enough to allow for generating all recursively enumerable sets of multisets? Several additional ingredients have been shown to be sufficient for obtaining even computational completeness with only one catalyst. Last year we could show that the derivation mode $$max_{objects}$$ m a x objects , where we only take those multisets of rules which affect the maximal number of objects in the underlying configuration one catalyst is sufficient for obtaining computational completeness without any other ingredients. In this paper we follow this way of research and show that one catalyst is also sufficient for obtaining computational completeness when using specific variants of derivation modes based on non-extendable multisets of rules: we only take those non-extendable multisets whose application yields the maximal number of generated objects or else those non-extendable multisets whose application yields the maximal difference in the number of objects between the newly generated configuration and the current configuration. A similar computational completeness result can even be obtained when omitting the condition of non-extendability of the applied multisets when taking the maximal difference of objects or the maximal number of generated objects. Moreover, we reconsider simple P system with energy control—both symbol and rule energy-controlled P systems equipped with these new variants of derivation modes yield computational completeness.


Author(s):  
Artiom Alhazov ◽  
Rudolf Freund ◽  
Sergiu Ivanov

AbstractCatalytic P systems are among the first variants of membrane systems ever considered in this area. This variant of systems also features some prominent computational complexity questions, and in particular the problem of using only one catalyst in the whole system: is one catalyst enough to allow for generating all recursively enumerable sets of multisets? Several additional ingredients have been shown to be sufficient for obtaining computational completeness even with only one catalyst. In this paper, we show that one catalyst is sufficient for obtaining computational completeness if either catalytic rules have weak priority over non-catalytic rules or else instead of the standard maximally parallel derivation mode, we use the derivation mode maxobjects, i.e., we only take those multisets of rules which affect the maximal number of objects in the underlying configuration.


2019 ◽  
Vol 27 (2) ◽  
pp. 209-221
Author(s):  
Karol Pąk

Summary This article is the final step of our attempts to formalize the negative solution of Hilbert’s tenth problem. In our approach, we work with the Pell’s Equation defined in [2]. We analyzed this equation in the general case to show its solvability as well as the cardinality and shape of all possible solutions. Then we focus on a special case of the equation, which has the form x2 − (a2 − 1)y2 = 1 [8] and its solutions considered as two sequences $\left\{ {{x_i}(a)} \right\}_{i = 0}^\infty ,\left\{ {{y_i}(a)} \right\}_{i = 0}^\infty$ . We showed in [1] that the n-th element of these sequences can be obtained from lists of several basic Diophantine relations as linear equations, finite products, congruences and inequalities, or more precisely that the equation x = yi(a) is Diophantine. Following the post-Matiyasevich results we show that the equality determined by the value of the power function y = xz is Diophantine, and analogously property in cases of the binomial coe cient, factorial and several product [9]. In this article, we combine analyzed so far Diophantine relation using conjunctions, alternatives as well as substitution to prove the bounded quantifier theorem. Based on this theorem we prove MDPR-theorem that every recursively enumerable set is Diophantine, where recursively enumerable sets have been defined by the Martin Davis normal form. The formalization by means of Mizar system [5], [7], [4] follows [10], Z. Adamowicz, P. Zbierski [3] as well as M. Davis [6].


2017 ◽  
Vol 82 (1) ◽  
pp. 359-374
Author(s):  
RASMUS BLANCK ◽  
ALI ENAYAT

AbstractLet $\left\langle {{W_n}:n \in \omega } \right\rangle$ be a canonical enumeration of recursively enumerable sets, and suppose T is a recursively enumerable extension of PA (Peano Arithmetic) in the same language. Woodin (2011) showed that there exists an index $e \in \omega$ (that depends on T) with the property that if${\cal M}$ is a countable model of T and for some${\cal M}$-finite set s, ${\cal M}$ satisfies ${W_e} \subseteq s$, then${\cal M}$ has an end extension${\cal N}$ that satisfies T + We = s.Here we generalize Woodin’s theorem to all recursively enumerable extensions T of the fragment ${{\rm{I}\rm{\Sigma }}_1}$ of PA, and remove the countability restriction on ${\cal M}$ when T extends PA. We also derive model-theoretic consequences of a classic fixed-point construction of Kripke (1962) and compare them with Woodin’s theorem.


2016 ◽  
Vol 73 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Juan A. Nido Valencia ◽  
Julio E. Solís Daun ◽  
Luis M. Villegas Silva

Author(s):  
Wolfgang Merkle ◽  
Frank Stephan ◽  
Jason Teutsch ◽  
Wei Wang ◽  
Yue Yang

Sign in / Sign up

Export Citation Format

Share Document