Complement block coding scheme for reducing peak-to-average power ratio of OFDM systems

2004 ◽  
Vol 21 (5) ◽  
pp. 413-420 ◽  
Author(s):  
Tao Jiang ◽  
Guangxi Zhu
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 35217-35228
Author(s):  
Abdulwahid Mohammed ◽  
Tawfik Ismail ◽  
Amin Nassar ◽  
Hassan Mostafa

Author(s):  
Mohsen Kazemian ◽  
Pooria Varahram ◽  
Shaiful Jahari B. Hashim ◽  
Borhanuddin B. Mohd. Ali ◽  
Somayeh Mohammady ◽  
...  

Author(s):  
PRITANJALI KUMARI ◽  
US TRIAR

Orthogonal Frequency Division Multiplexing (OFDM), widely used in digital wireless communication, has a major drawback of high Peak to Average Power Ratio (PAPR). A reduced complexity partial transmit sequence (PTS) scheme has been proposed to solve high peak to average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) system. In the proposed PTS scheme, a function is generated by summing the power of time domain samples at time ‘n’ in each sub blocks, known as “Hn”.Only those samples, having Hn greater than or equal to a preset threshold value (αT) are used for peak power calculation during the process of selecting a candidate signal with the lowest PAPR for transmission. As compared to conventional PTS scheme, the proposed scheme achieves almost the same PAPR reduction performance with much lower computational complexity.


Author(s):  
Dr. Atul Suryavanshi

The main defect of OFDM systems is its high peak-to-average power ratio (PAPR). To decrease PAPR, Adaptive Huffman coding is essential. Encoding is transferred by two encoding techniques Huffman coding and Adaptive Huffman coding at the transmitter side. Mapping is done by QAM 16 and PSK 16.The PAPR results of Huffman and adaptive Huffman coding with QAM 16 and PSK 16 is compared. Simulation results shows that the Adaptive Huffman coding along with QAM 16 produces fruitful results in comparison with Huffman coding and adaptive Huffman coding with PSK 16.


Sign in / Sign up

Export Citation Format

Share Document