papr reduction
Recently Published Documents


TOTAL DOCUMENTS

2099
(FIVE YEARS 390)

H-INDEX

40
(FIVE YEARS 7)

2022 ◽  
Vol 10 (1) ◽  
pp. 91
Author(s):  
Mohsin Murad ◽  
Imran A. Tasadduq ◽  
Pablo Otero

We propose an effective, low complexity and multifaceted scheme for peak-to-average power ratio (PAPR) reduction in the orthogonal frequency division multiplexing (OFDM) system for underwater acoustic (UWA) channels. In UWA OFDM systems, PAPR reduction is a challenging task due to low bandwidth availability along with computational and power limitations. The proposed scheme takes advantage of XOR ciphering and generates ciphered Bose–Chaudhuri–Hocquenghem (BCH) codes that have low PAPR. This scheme is based upon an algorithm that computes several keys offline, such that when the BCH codes are XOR-ciphered with these keys, it lowers the PAPR of BCH-encoded signals. The subsequent low PAPR modified BCH codes produced using the chosen keys are used in transmission. This technique is ideal for UWA systems as it does not require additional computational power at the transceiver during live transmission. The advantage of the proposed scheme is threefold. First, it reduces the PAPR; second, since it uses BCH codes, the bit error rate (BER) of the system improves; and third, a level of encryption is introduced via XOR ciphering, enabling secure communication. Simulations were performed in a realistic UWA channel, and the results demonstrated that the proposed scheme could indeed achieve all three objectives with minimum computational power.


2022 ◽  
Vol 42 (2) ◽  
pp. 483-492
Author(s):  
Arun Kumar ◽  
Sumit Chakravarty ◽  
S. Suganya ◽  
Mehedi Masud ◽  
Sultan Aljahdali

Author(s):  
A. Gokul ◽  
J. N. Sarath ◽  
M. Mohit ◽  
M. Niranjan ◽  
Aswathy K. Nair

2021 ◽  
Vol 2128 (1) ◽  
pp. 012004
Author(s):  
Sahar M. Alrabeiy ◽  
Sameh A. Fathy ◽  
Safa M. Gasser ◽  
Mohamed S. El-Mahallawy

Abstract One of the most promising 5G waveform candidates is the universal-filtered multicarrier system (UFMC). The UFMC system reduces the out-of-band (OoB) emission, bringing about higher spectral efficiency. This is assumed to reach robustness against frequency offset and low latency. Although, as aforementioned, the UFMC system offers many advantages, it lacks high peak-to-average power ratio (PAPR) as a multicarrier transmission technique. This research paper tackles two approaches; firstly, RCS, by developing a simulated conventional SLM system, with modifications to generate the same number of waveforms, while using fewer UFMC modulators. Secondly, by developing a simulated conventional SLM system, with modifications using the same number of modulators to generate more waveforms that would be generated in the conventional scheme. The two sets of results from the proposed M-SLM scheme are compared to each other, and to other PAPR reduction schemes using OFDM and UFMC. To reduce PAPR in UFMC systems, (M-SLM) scheme with low complexity is proposed. The essence of the proposed M-SLM scheme is represented in making use of the cyclically shifting process and FMC modulator’s linearity property. The proposed M-SLM scheme uses Um UFMC modulators to produce Uw alternative UFMC waveforms, where Uw = Um (2Um − 1). As a result, drawing a comparison with existing SLM based PAPR reduction schemes for UFMC systems; the proposed M-SLM scheme's computational complexity is reduced. Finally, there is a comparison between the proposed M-SLM scheme and the schemes there in the literature according to PAPR reduction ability.


Author(s):  
Zeyid T. Ibraheem ◽  
Kawakib K. Ahmed ◽  
Yousef Fazea ◽  
Mohammed Madi ◽  
Fathey Mohammed ◽  
...  
Keyword(s):  

Author(s):  
A. Devi ◽  
M. Julie Therese ◽  
P. Dharanyadevi ◽  
I. Sruthi

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lavish Kansal ◽  
Gurjot Singh Gaba ◽  
Ashutosh Sharma ◽  
Gaurav Dhiman ◽  
Mohammed Baz ◽  
...  

In the 5th generation (5G) and 6th generation (6G) of wireless mobile telecommunication networks, the requests for an elevated data rate with access to stationary as well as portable customers are going to be overwhelming. Mobile worldwide interoperability for microwave access (WiMAX) comes out as a favourable alternative that is intelligibly developed and more matured than wireless fidelity (Wi-Fi). Mobile WiMAX makes use of the orthogonal frequency division multiple access (OFDMA) technology for its two-way communication to enhance the system performance in fading environments making it more suitable for 5G applications. The diverse OFDM forms deliberated here are the fast Fourier transform- (FFT-) based WiMAX and discrete wavelet transform- (DWT-) based WiMAX. The suggested study exhibits the bit error rate (BER) and peak to average power ratio (PAPR) reduction by integrating different wavelet families, i.e., Haar, symlet, coiflet, and reverse biorthogonal over Rayleigh fading channel. The simulation results obtained by MATLAB depicts an improvement in PAPR reduction, and signal to noise ratio (SNR) requirement is also reduced by 6-12 dB by using DWT-incorporated WiMAX at a BER of 10-4.


Sign in / Sign up

Export Citation Format

Share Document