scholarly journals Periodic points and rotation numbers for area preserving diffeomorphisms of the plane

1990 ◽  
Vol 71 (1) ◽  
pp. 105-120 ◽  
Author(s):  
John Franks
2020 ◽  
pp. 1-12
Author(s):  
LEI CHEN

Let $\operatorname{Homeo}_{+}(D_{n}^{2})$ be the group of orientation-preserving homeomorphisms of $D^{2}$ fixing the boundary pointwise and $n$ marked points as a set. The Nielsen realization problem for the braid group asks whether the natural projection $p_{n}:\operatorname{Homeo}_{+}(D_{n}^{2})\rightarrow B_{n}:=\unicode[STIX]{x1D70B}_{0}(\operatorname{Homeo}_{+}(D_{n}^{2}))$ has a section over subgroups of $B_{n}$ . All of the previous methods use either torsion or Thurston stability, which do not apply to the pure braid group $PB_{n}$ , the subgroup of $B_{n}$ that fixes $n$ marked points pointwise. In this paper, we show that the pure braid group has no realization inside the area-preserving homeomorphisms using rotation numbers.


2016 ◽  
Vol 38 (4) ◽  
pp. 1479-1498
Author(s):  
JUNGSOO KANG

In reversible dynamical systems, it is of great importance to understand symmetric features. The aim of this paper is to explore symmetric periodic points of reversible maps on planar domains invariant under a reflection. We extend Franks’ theorem on a dichotomy of the number of periodic points of area-preserving maps on the annulus to symmetric periodic points of area-preserving reversible maps. Interestingly, even a non-symmetric periodic point guarantees infinitely many symmetric periodic points. We prove an analogous statement for symmetric odd-periodic points of area-preserving reversible maps isotopic to the identity, which can be applied to dynamical systems with double symmetries. Our approach is simple, elementary, and far from Franks’ proof. We also show that a reversible map has a symmetric fixed point if and only if it is a twist map which generalizes a boundary twist condition on the closed annulus in the sense of Poincaré–Birkhoff. Applications to symmetric periodic orbits in reversible dynamical systems with two degrees of freedom are briefly discussed.


1986 ◽  
Vol 6 (2) ◽  
pp. 205-239 ◽  
Author(s):  
Kevin Hockett ◽  
Philip Holmes

AbstractWe investigate the implications of transverse homoclinic orbits to fixed points in dissipative diffeomorphisms of the annulus. We first recover a result due to Aronsonet al.[3]: that certain such ‘rotary’ orbits imply the existence of an interval of rotation numbers in the rotation set of the diffeomorphism. Our proof differs from theirs in that we use embeddings of the Smale [61] horseshoe construction, rather than shadowing and pseudo orbits. The symbolic dynamics associated with the non-wandering Cantor set of the horseshoe is then used to prove the existence of uncountably many invariant Cantor sets (Cantori) of each irrational rotation number in the interval, some of which are shown to be ‘dissipative’ analogues of the order preserving Aubry-Mather Cantor sets found by variational methods in area preserving twist maps. We then apply our results to the Josephson junction equation, checking the necessary hypotheses via Melnikov's method, and give a partial characterization of the attracting set of the Poincaré map for this equation. This provides a concrete example of a ‘Birkhoff attractor’ [10].


1988 ◽  
Vol 8 (4) ◽  
pp. 555-584 ◽  
Author(s):  
Raphaël Douady

AbstractWe prove that smooth enough invariant curves of monotone twist maps of an annulus with fixed diophantine rotation number depend on the map in a differentiable way. Partial results hold for Aubry-Mather sets.Then we show that invariant curves of the same map with different rotation numbers ω and ω′ cannot approach each other at a distance less than cst. |ω−ω′|. By K.A.M. theory, this implies that, under suitable assumptions, the union of invariant curves has positive measure.Analogous results are due to Zehnder and Herman (for the first part), and to Lazutkin and Pöschel (for the second one), in the case of Hamiltonian systems and area preserving maps.


2015 ◽  
Vol 164 (3) ◽  
pp. 403-472 ◽  
Author(s):  
Andres Koropecki ◽  
Patrice Le Calvez ◽  
Meysam Nassiri

2012 ◽  
Vol 148 (6) ◽  
pp. 1969-1984 ◽  
Author(s):  
Brian Collier ◽  
Ely Kerman ◽  
Benjamin M. Reiniger ◽  
Bolor Turmunkh ◽  
Andrew Zimmer

AbstractA celebrated theorem in two-dimensional dynamics due to John Franks asserts that every area-preserving homeomorphism of the sphere has either two or infinitely many periodic points. In this work we re-prove Franks’ theorem under the additional assumption that the map is smooth. Our proof uses only tools from symplectic topology and thus differs significantly from previous proofs. A crucial role is played by the results of Ginzburg and Kerman concerning resonance relations for Hamiltonian diffeomorphisms.


2015 ◽  
Vol 36 (7) ◽  
pp. 2293-2333
Author(s):  
JINGZHI YAN

Let $f$ be an orientation and area preserving diffeomorphism of an oriented surface $M$ with an isolated degenerate fixed point $z_{0}$ with Lefschetz index one. Le Roux conjectured that $z_{0}$ is accumulated by periodic orbits. In this paper, we will approach Le Roux’s conjecture by proving that if $f$ is isotopic to the identity by an isotopy fixing $z_{0}$ and if the area of $M$ is finite, then $z_{0}$ is accumulated not only by periodic points, but also by periodic orbits in the measure sense. More precisely, the Dirac measure at $z_{0}$ is the limit in the weak-star topology of a sequence of invariant probability measures supported on periodic orbits. Our proof is purely topological. It works for homeomorphisms and is related to the notion of local rotation set.


Sign in / Sign up

Export Citation Format

Share Document