Investigation of rupture process of the 1999M=5.4 Xiuyan, Liaoning, earthquake sequence

2001 ◽  
Vol 14 (6) ◽  
pp. 701-704
Author(s):  
Xue-zhong Chen ◽  
Zeng-xi Gai ◽  
Shi-yong Zhou ◽  
Tie-shuan Guo ◽  
Ling-ren Zhu
Author(s):  
Shuang-Lan Wu ◽  
Atsushi Nozu ◽  
Yosuke Nagasaka

ABSTRACT The 2019 Mw 7.1 mainshock of the Ridgecrest earthquake sequence, which was the first event exceeding Mw 7.0 in California since the 1999 Hector Mine earthquake, caused near-fault ground motions exceeding 0.5g and 70  cm/s. In this study, the rupture process and the generation mechanism of strong ground motions of the mainshock were investigated through waveform inversions of strong-motion data in the frequency range of 0.2–2.0 Hz using empirical Green’s functions (EGFs). The results suggest that the mainshock involved two large slip regions: the primary one with a maximum slip of approximately 4.4 m was centered ∼3  km northwest of the hypocenter, which was slightly shallower than the hypocenter, and the secondary one was centered ∼25  km southeast of the hypocenter. Outside these regions, the slip was rather small and restricted to deeper parts of the fault. A relatively small rupture velocity of 2.1  km/s was identified. The robustness of the slip model was examined by conducting additional inversion analyses with different combinations of EGF events and near-fault stations. In addition, using the preferred slip model, we synthesized strong motions at stations that were not used in the inversion analyses. The synthetic waveforms captured the timing of the main phases of observed waveforms, indicating the validity of the major spatiotemporal characteristics of the slip model. Our large slip regions are also generally visible in the models proposed by other researchers based on different datasets and focusing on lower frequency ranges (generally lower than 0.5 Hz). In particular, two large slip regions in our model are very consistent with two of the four subevents identified by Ross et al. (2019), which may indicate that part of the large slip regions that generated low-frequency ground motions also generated high-frequency ground motions up to 2.0 Hz during the Ridgecrest mainshock.


2020 ◽  
Vol 110 (4) ◽  
pp. 1603-1626 ◽  
Author(s):  
Kang Wang ◽  
Douglas S. Dreger ◽  
Elisa Tinti ◽  
Roland Bürgmann ◽  
Taka’aki Taira

ABSTRACT The 2019 Ridgecrest earthquake sequence culminated in the largest seismic event in California since the 1999 Mw 7.1 Hector Mine earthquake. Here, we combine geodetic and seismic data to study the rupture process of both the 4 July Mw 6.4 foreshock and the 6 July Mw 7.1 mainshock. The results show that the Mw 6.4 foreshock rupture started on a northwest-striking right-lateral fault, and then continued on a southwest-striking fault with mainly left-lateral slip. Although most moment release during the Mw 6.4 foreshock was along the southwest-striking fault, slip on the northwest-striking fault seems to have played a more important role in triggering the Mw 7.1 mainshock that happened ∼34  hr later. Rupture of the Mw 7.1 mainshock was characterized by dominantly right-lateral slip on a series of overall northwest-striking fault strands, including the one that had already been activated during the nucleation of the Mw 6.4 foreshock. The maximum slip of the 2019 Ridgecrest earthquake was ∼5  m, located at a depth range of 3–8 km near the Mw 7.1 epicenter, corresponding to a shallow slip deficit of ∼20%–30%. Both the foreshock and mainshock had a relatively low-rupture velocity of ∼2  km/s, which is possibly related to the geometric complexity and immaturity of the eastern California shear zone faults. The 2019 Ridgecrest earthquake produced significant stress perturbations on nearby fault networks, especially along the Garlock fault segment immediately southwest of the 2019 Ridgecrest rupture, in which the coulomb stress increase was up to ∼0.5  MPa. Despite the good coverage of both geodetic and seismic observations, published coseismic slip models of the 2019 Ridgecrest earthquake sequence show large variations, which highlight the uncertainty of routinely performed earthquake rupture inversions and their interpretation for underlying rupture processes.


Sign in / Sign up

Export Citation Format

Share Document