slip model
Recently Published Documents


TOTAL DOCUMENTS

453
(FIVE YEARS 101)

H-INDEX

34
(FIVE YEARS 6)

In the coming decades, humanoid robots will play a rising role in society. The present article discusses their walking control and obstacle avoidance on uneven terrain using enhanced spring-loaded inverted pendulum model (ESLIP). The SLIP model is enhanced by tuning it with an adaptive particle swarm optimization (APSO) approach. It helps the humanoid robot to reach closer to the obstacles in order to optimize the turning angle to optimize the path length. The desired trajectory, along with the sensory data, is provided to the SLIP model, which creates compatible COM (center of mass) dynamics for stable walking. This output is fed to APSO as input, which adjusts the placement of the foot during interaction with uneven surfaces and obstacles. It provides an optimum turning angle for shunning the obstacles and ensures the shortest path length. Simulation has been carried out in a 3D simulator based on the proposed controller and SLIP controller in uneven terrain.


2021 ◽  
Vol 39 ◽  
pp. 62-68
Author(s):  
Xiaoping Gong ◽  
Yangjia She ◽  
Tingting Zheng ◽  
Peiran Li ◽  
Jingchang Chen

2021 ◽  
Vol 267 ◽  
pp. 112733
Author(s):  
Bochen Zhang ◽  
Xiaoli Ding ◽  
Falk Amelung ◽  
Chisheng Wang ◽  
Wenbin Xu ◽  
...  

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 498-506
Author(s):  
Xiaoyong Lv ◽  
Zhiwu Yu ◽  
Zhi Shan

2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Dave Schmitthenner ◽  
Anne E. Martin

While human walking has been well studied, the exact controller is unknown. This paper used human experimental walking data and system identification techniques to infer a human-like controller for a spring-loaded inverted pendulum (SLIP) model. Because the best system identification technique is unknown, three methods were used and compared. First, a linear system was found using ordinary least squares. A second linear system was found that both encoded the linearized SLIP model and matched the first linear system as closely as possible. A third nonlinear system used sparse identification of nonlinear dynamics (SINDY). When directly mapping states from the start to the end of a step, all three methods were accurate, with errors below 10% of the mean experimental values in most cases. When using the controllers in simulation, the errors were significantly higher but remained below 10% for all but one state. Thus, all three system identification methods generated accurate system models. Somewhat surprisingly, the linearized system was the most accurate, followed closely by SINDY. This suggests that nonlinear system identification techniques are not needed when finding a discrete human gait controller, at least for unperturbed walking. It may also suggest that human control of normal, unperturbed walking is approximately linear.


2021 ◽  
Vol 21 (11) ◽  
pp. 3489-3508
Author(s):  
Jean Roger ◽  
Bernard Pelletier ◽  
Maxime Duphil ◽  
Jérôme Lefèvre ◽  
Jérôme Aucan ◽  
...  

Abstract. On 5 December 2018, a magnitude Mw 7.5 earthquake occurred southeast of Maré, an island of the Loyalty Islands archipelago, New Caledonia. This earthquake is located at the junction between the plunging Loyalty Ridge and the southern part of the Vanuatu Arc, in a tectonically complex and very active area regularly subjected to strong seismic crises and earthquakes higher than magnitude 7 and up to 8. Widely felt in New Caledonia, it was immediately followed by a tsunami warning, confirmed shortly after by a first wave arrival at the Loyalty Islands tide gauges (Maré and Lifou), and then along the east coast of Grande Terre of New Caledonia and in several islands of the Vanuatu Archipelago. Two solutions of the seafloor initial deformation are considered for tsunami generation modeling, one using a non-uniform finite-source model from USGS and the other being a uniform slip model built from the Global Centroid Moment Tensor (GCMT) solution, with the geological knowledge of the region and empirical laws establishing relationships between the moment magnitude and the fault plane geometry. Both tsunami generation and propagation are simulated using the Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM), an open-source modeling code solving the shallow-water equations on an unstructured grid allowing refinement in many critical areas. The results of numerical simulations are compared to tide gauge records, field observations and testimonials from 2018. Careful inspection of wave amplitude and wave energy maps for the two simulated scenarios shows clearly that the heterogeneous deformation model is inappropriate, while it raises the importance of the fault plane geometry and azimuth for tsunami amplitude and directivity. The arrival times, wave amplitude and polarities obtained with the uniform slip model are globally coherent, especially in far-field locations (Hienghène, Poindimié and Port Vila). Due to interactions between the tsunami waves and the numerous bathymetric structures like the Loyalty and Norfolk ridges in the neighborhood of the source, the tsunami propagating toward the south of Grande Terre and the Isle of Pines is captured by these structures acting like waveguides, allowing it to propagate to the north-northwest, especially in the Loyalty Islands and along the east coast of Grande Terre. A similar observation results from the propagation in the Vanuatu islands, from Aneityum to Efate.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1351
Author(s):  
Shih-Chieh Hsiao ◽  
Sin-Ying Lin ◽  
Huang-Jun Chen ◽  
Ping-Yin Hsieh ◽  
Jui-Chao Kuo

A modified Taylor model, hereafter referred to as the MTCS(Mechanical-Twinning-withCoplanar-Slip)-model, is proposed in the present work to predict weak texture components in the shear bands of brass-type fcc metals with a twin–matrix lamellar (TML) structure. The MTCS-model considers two boundary conditions (i.e., twinning does not occur in previously twinned areas and coplanar slip occurs in the TML region) to simulate the rolling texture of Cu–30%Zn. In the first approximation, texture simulation using the MTCS-model revealed brass-type textures, including Y {1 1 1}⟨1 1 2⟩ and Z {1 1 1}⟨1 1 0⟩ components, which correspond to the observed experimental textures. Single orientations of C (1 1 2)[1 ¯ 1 ¯ 1] and S’ (1 2 3)[4¯ 1¯ 2] were applied to the MTCS-model to understand the evolution of Y and Z components. For the Y orientation, the C orientation rotates toward T (5 5 2)[1 1 5] by twinning after 30% reduction and then toward Y (1 1 1)[1 1 2] by coplanar slip after over 30% reduction. For the Z orientation, the S’ orientation rotates toward T’ (3 2 1)[2 1 ¯4¯] by twinning after 30% reduction and then toward Z (1 1 1)[1 0 1¯] by coplanar slip after over 30% reduction.


Solid Earth ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 2467-2477
Author(s):  
Yueyang Xia ◽  
Jacob Geersen ◽  
Dirk Klaeschen ◽  
Bo Ma ◽  
Dietrich Lange ◽  
...  

Abstract. We resolve a previously unrecognized shallow subducting seamount from a re-processed multichannel seismic profile crossing the 1994 Mw 7.8 Java tsunami earthquake rupture area. Seamount subduction occurs where the overriding plate experiences uplift by lateral shortening and vertical thickening. Pronounced back-thrusting at the landward slope of the forearc high and the formation of splay faults branching off the landward flank of the subducting seamount are observed. The location of the seamount in relation to the 1994 earthquake hypocentre and its co-seismic slip model suggests that the seamount acted as a seismic barrier to the up-dip co-seismic rupture propagation of this moderate-size earthquake.


Author(s):  
Cheng Jiang ◽  
Qian-Qian Yu ◽  
Xiang-Lin Gu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document