body waves
Recently Published Documents


TOTAL DOCUMENTS

723
(FIVE YEARS 165)

H-INDEX

48
(FIVE YEARS 5)

Author(s):  
A. Filippova ◽  
N. Gileva

We calculated seismic moment tensors in a double-couple approximation (focal mechanisms, scalar seismic moments, and moment magnitudes) and hypocentral depths for twenty earthquakes with Mw≥4.2 that occurred in the Baikal region and Transbaikalia in 2015. The initial data were amplitude spectra of Rayleigh and Love waves obtained from their records at the broadband seismic stations of the IRIS and the DK networks and first-motion polarities of body waves recorded at regional distances. A combination of the normal fault and strike-slip movements dominate in the sources of the major part of the study earthquakes. For the strongest of the considered seismic events (Mw≥4.6), the subvertical compression and subhorizontal tension in the SE-NW direction prevail, i.e. the tension is perpendicular to the main structures of the Baikal rift zone. The seismic events with Mw<4.6 are characterized by a more scattered orientation of compression and tension axis that could be caused, for instance, by stress redistribution in small-scale crustal blocks after stronger earthquakes. The obtained results are of great value for issues concerned with seismic hazard assessment and the development of geodynamical models of the lithosphere evolution of the study region.


Author(s):  
Guillermo M. Álamo ◽  
Luis A. Padrón ◽  
Juan J. Aznárez ◽  
Orlando Maeso

AbstractThis paper presents a three–dimensional linear numerical model for the dynamic and seismic analysis of pile-supported structures that allows to represent simultaneously the structures, pile foundations, soil profile and incident seismic waves and that, therefore, takes directly into account structure–pile–soil interaction. The use of advanced Green’s functions to model the dynamic behaviour of layered soils, not only leads to a very compact representation of the problem and a simplification in the preparation of the data files (no meshes are needed for the soil), but also allows to take into account arbitrarily complex soil profiles and problems with large numbers of elements. The seismic excitation is implemented as incident planar body waves (P or S) propagating through the layered soil from an infinitely–distant source and impinging on the site with any generic angle of incidence. The response of the system is evaluated in the frequency domain, and seismic results in time domain are then obtained using the frequency–domain method through the use of the Fast Fourier Transform. An application example using a pile-supported structure is presented in order to illustrate the capabilities of the model. Piles and columns are modelled through Timoshenko beam elements, and slabs, pile caps and shear walls are modelled using shell finite elements, so that the real flexibility of all elements can be rigorously taken into account. This example is also used to explore the influence of soil profile and angle of incidence on different variables of interest in earthquake engineering.


Geophysics ◽  
2021 ◽  
pp. 1-84
Author(s):  
Chunying Yang ◽  
Wenchuang Wang

Irregular acquisition geometry causes discontinuities in the appearance of surface wave events, and a large offset causes seismic records to appear as aliased surface waves. The conventional method of sampling data affects the accuracy of the dispersion spectrum and reduces the resolution of surface waves. At the same time, ”mode kissing” of the low-velocity layer and inhomogeneous scatterers requires a high-resolution method for calculating surface wave dispersion. This study tested the use of the multiple signal classification (MUSIC) algorithm in 3D multichannel and aliased wavefield separation. Azimuthal MUSIC is a useful method to estimate the phase velocity spectrum of aliased surface wave data, and it represent the dispersion spectra of low-velocity and inhomogeneous models. The results of this study demonstrate that mode-kissing affects dispersion imaging, and inhomogeneous scatterers change the direction of surface-wave propagation. Surface waves generated from the new propagation directions are also dispersive. The scattered surface wave has a new dispersion pattern different to that of the entire record. Diagonal loading was introduced to improve the robustness of azimuthal MUSIC, and numerical experiments demonstrate the resultant effectiveness of imaging aliasing surface waves. A phase-matched filter was applied to the results of azimuthal MUSIC, and phase iterations were unwrapped in a fast and stable manner. Aliased surface waves and body waves were separated during this process. Overall, field data demonstrate that azimuthal MUSIC and phase-matched filters can successfully separate aliased surface waves.


Author(s):  
M. Tesch ◽  
J. Stampa ◽  
T. Meier ◽  
E. Kissling ◽  
G. Hetényi ◽  
...  

AbstractThe AlpArray experiment and the deployment of Swath-D together with the dense permanent network in Italy allow for detailed imaging of the spatio-temporal imaging complexity of seismic wave-fields within the greater Alpine region. The distance of any point within the area to the nearest station is less than 30 km, resulting in an average inter-station distance of about 45 km. With a much denser deployment in a smaller region of the Alps (320 km in length and 140 km wide), the Swath-D network possesses an average inter-station distance of about 15 km. We show that seismogram sections with a spatial sampling of less than 5 km can be obtained using recordings of these regional arrays for just a single event. Multiply reflected body waves can be observed for up to 2 h after source time. In addition, we provide and describe animations of long-period seismic wave-fields using recordings of about 1300–1600 broadband stations for six representative earthquakes. These illustrate the considerable spatio-temporal variability of the wave-field’s properties at a high lateral resolution. Within denser station distributions like those provided by Swath-D, even shorter period body and surface wave features can be recovered. The decrease of the horizontal wavelength from to to surface waves, deviations from spherically symmetric wavefronts, and the capability to detect multi-orbit arrivals are demonstrated qualitatively by the presented wave-field animations, which are a valuable tool for educational, quality control, and research purposes. We note that the information content of the acquired datasets can only be adequately explored by application of appropriate quantitative methods accounting for the considerable complexity of the seismic wave-fields as revealed by the now available station configuration.


Author(s):  
Tom Eulenfeld ◽  
Torsten Dahm ◽  
Sebastian Heimann ◽  
Ulrich Wegler

ABSTRACT With the present study, we introduce a fast and robust method to calculate the source displacement spectra of small earthquakes on a local to regional scale. The work is based on the publicly available Qopen method of full envelope inversion, which is further tuned for the given purpose. Important source parameters—seismic moment, moment magnitude, corner frequency, and high-frequency fall off—are determined from the source spectra by fitting a simple earthquake source model. The method is demonstrated by means of a data set comprising the 2018 West Bohemia earthquake swarm. We report moment magnitudes, corner frequencies, and centroid moment tensors inverted from short-period body waves with the Grond package for all earthquakes with a local magnitude larger than 1.8. Moment magnitudes calculated by envelope inversion show a very good agreement to moment magnitudes resulting from the probabilisitc moment tensor inversion. Furthermore, source displacement spectra from envelope inversion show a good agreement with spectra obtained by multiple taper analysis of the direct onsets of body waves but are not affected by the large scatter of the second. The seismic moments obtained with the envelope inversion scale with corner frequencies according to M0∝fc−4.7. Earthquakes of the present data set result in a smaller stress drop for smaller magnitudes. Self-similarity of earthquake rupture is not observed. In addition, we report frequency-dependent site amplification at the used stations.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zeming Wang ◽  
Jianhua Yang ◽  
Ting Zhang ◽  
Chi Yao ◽  
Xiaobo Zhang ◽  
...  

Tunnel blast-induced vibration probably causes damage to the rock mass surrounding the tunnel surface and also to the rock mass of the slope at the tunnel entrance. It is important to simultaneously monitor the vibration on the tunnel surface and on the tunnel entrance slope face, especially when the blasting work face is close to tunnel entrance. During blasting excavation of the traffic tunnel at Baihetan hydropower station, vibration monitors were installed both on the tunnel surface and on the tunnel entrance slope face. Based on the monitoring data, a comparative study is conducted on the peak particle velocity (PPV) and frequency characteristics of the vibrations at these two locations. A three-dimensional FEM simulation of the tunnel blast is then performed to verify the field test results. The field monitoring and the numerical simulation show that there is significant difference between the vibration on the tunnel surface and that on the tunnel entrance slope face. The vibration on the tunnel surface has greater PPV and faster attenuation, while the tunnel entrance slope face has higher frequency and faster reduction rate in the center frequency. These differences are attributed to the different wave types and wave propagation paths. The tunnel surface is mainly surface waves transmitted through the damaged rock mass around the tunnel profile, while the tunnel entrance slope face originates mainly from the body waves transmitted via the undamaged rock mass inside the mountain. The comparisons of the monitored vibrations with the velocity limits specified in the Chinese standard show that the most dangerous vibration that may exceed the limit occurs on the tunnel surface. Therefore, the maximum charge weight used in the tunnel blast is determined by the vibration on the tunnel surface. Under different control standards, the allowable maximum charge weight per delay is further discussed.


Geophysics ◽  
2021 ◽  
pp. 1-56
Author(s):  
Afshin Aghayan ◽  
Priyank Jaiswal

Denoising becomes a non-trivial task when noise and signal overlap in multiple domains such as time, frequency, and velocity. Fortunately, signal and noise waveforms in general tend to remain morphologically different. This paper shows how morphological differences can be used to separate body-wave signals from other waveforms such as ground roll and cultural noise. The key was finding a wavelet that was a close approximation of the true source signature (SS) and remained uncontaminated by the Green’s function in any significant manner. An inverse filter designed using such a wavelet selectively compressed the body waves which was then extracted using median and low-pass filters. The overall phenomenon is explained with a synthetic example. The idea is also tested on a land dataset that was generated using a large weight drop source where a wavelet recorded ∼3 m from the source location fulfilled the criteria set in the proposed method. Results suggest that the incremental effort of recording an extra trace close to the source location during acquisition may provide previously unavailable denoising opportunities during processing although the trace itself may be redundant for imaging.


Author(s):  
Jacob Fies ◽  
Brad J. Gemmell ◽  
Stephanie M. Fogerson ◽  
Jennifer R. Morgan ◽  
Eric D. Tytell ◽  
...  

Axon regeneration is critical for restoring neural function after spinal cord injury. This has prompted a series of studies on the neural and functional recovery of lampreys after spinal cord transection. Despite this, there are still many basic questions remaining about how much functional recovery depends on axon regeneration. Our goal was to examine how swimming performance was related to degree of axon regeneration in lampreys recovering from spinal cord transection by quantifying the relationship between swimming performance and percent axon regeneration of transected lampreys after 11 weeks of recovery. We found that while swimming speeds varied, they did not relate to percent axon regeneration. In fact, swimming speeds were highly variable within individuals meaning that most individuals could swim at both moderate and slow speeds, regardless of percent axon regeneration. However, none of the transected individuals were able to swim as fast as the control lampreys. To swim fast, control lamprey generated high amplitude body waves with long wavelengths. Transected lampreys generated body waves with lower amplitude and shorter wavelengths than controls and to compensate, transected lamprey increased their wave frequencies to swim faster. As a result, transected lampreys had significantly higher frequencies than control lamprey at comparable swimming velocities. These data suggest that the control lampreys swam more efficiently than transected lampreys. In conclusion, there appears to be a minimal recovery threshold in terms of percent axon regeneration required for lampreys to be capable of swimming, however, there also seems to be a limit to how much they can behaviorally recover.


Sign in / Sign up

Export Citation Format

Share Document