Veneziano model for low-energy nucleon-nucleon phase-shifts and high-energy charge-exchange cross-sections

1973 ◽  
Vol 18 (3) ◽  
pp. 427-444 ◽  
Author(s):  
K. S. Stowe ◽  
D. Y. Wong
2019 ◽  
Vol 35 (08) ◽  
pp. 2050045
Author(s):  
Pardeep Singh ◽  
Monika Singh ◽  
Neha Rani

The nuclear isotopic structure can be understood easily via the intermediate-energy charge exchange reactions of (p, n) and [Formula: see text]He, [Formula: see text] type. In the current contribution, we present some results for charge exchange reactions induced by 3He on targets lying in mass region [Formula: see text] within the theoretical framework of plane wave impulse approximation (PWIA) and distorted wave impulse approximation (DWIA). Here, the recoil effects in PWIA have also been considered. Particularly, the angular distributions and the unit cross-sections have been calculated and compared with the available data. Further, the importance of inclusion of the exchange contribution in these reactions is also considered, which eventually enhance the matching with data.


1968 ◽  
Vol 175 (5) ◽  
pp. 1757-1761 ◽  
Author(s):  
N. G. Antoniou ◽  
S. R. Komy ◽  
C. D. Palev ◽  
M. Samiullah

The nucleon-antinucleon ( N-N ) problem is formulated in the new Tamm-Dancoff (NTD) approximation in the lowest order, and the integral equation for N-N̅ scattering derived, taking account of both the exchange and annihilation interactions. It is found convenient to represent the N-N̅ wave-function as a 4 x 4 matrix, rather than the usual 16 x 1 matrix for the nucleon-nucleon wave-function, and a complete correspondence is established between these two representations. The divergences associated with the annihilation interaction and their renormalization are discussed in detail in the following paper (Mitra & Saxena 1960; referred to as II). The integral equation with the exchange interaction alone, is then separated into eigenstates of T, J, L and S in the usual manner and the various phase shifts obtained. The results of II for the contribution of the annihilation term are then used to calculate the complete phase shifts from which the various cross-sections (scattering and charge exchange) are derived. The results indicate that while the exchange term alone gives too small values for the total cross-sections versus energy, inclusion of the annihilation interaction without renormalization effects makes the cross-sections nearly three times larger than those observed. On the other hand, inclusion of the finite effects of renormalization (which manifest themselves essentially as a suppression of the virtual meson propagator) brings down these cross-sections to the order of magnitude of the observed ones.


1967 ◽  
Vol 156 (5) ◽  
pp. 1685-1697 ◽  
Author(s):  
R. J. Glauber ◽  
Victor Franco

Sign in / Sign up

Export Citation Format

Share Document