Derivation of the generalized Fokker-Planck equation from the Boltzmann transport equation for particles with zitterbewegung

1984 ◽  
Vol 79 (1) ◽  
pp. 59-66 ◽  
Author(s):  
G. F. Cerofolini
2020 ◽  
pp. 292-341
Author(s):  
Sandip Tiwari

This chapter explores the evolution of an ensemble of electrons under stimulus, classically and quantum-mechanically. The classical Liouville description is derived, and then reformed to the quantum Liouville equation. The differences between the classical and the quantum-mechanical description are discussed, emphasizing the uncertainty-induced fuzziness in the quantum description. The Fokker-Planck equation is introduced to describe the evolution of ensembles and fluctuations in it that comprise the noise. The Liouville description makes it possible to write the Boltzmann transport equation with scattering. Limits of validity of the relaxation time approximation are discussed for the various scattering possibilities. From this description, conservation equations are derived, and drift and diffusion discussed as an approximation. Brownian motion arising in fast-and-slow events and response are related to the drift and diffusion and to the Langevin and Fokker-Planck equations as probabilistic evolution. This leads to a discussion of Markov processes and the Kolmogorov equation.


1989 ◽  
Vol 9 (1) ◽  
pp. 109-120
Author(s):  
G. Liao ◽  
A.F. Lawrence ◽  
A.T. Abawi

2020 ◽  
Vol 23 (2) ◽  
pp. 450-483 ◽  
Author(s):  
Giacomo Ascione ◽  
Yuliya Mishura ◽  
Enrica Pirozzi

AbstractWe define a time-changed fractional Ornstein-Uhlenbeck process by composing a fractional Ornstein-Uhlenbeck process with the inverse of a subordinator. Properties of the moments of such process are investigated and the existence of the density is shown. We also provide a generalized Fokker-Planck equation for the density of the process.


Sign in / Sign up

Export Citation Format

Share Document