Numerical solution of the fifth-order KdV equation for shallow-water solitary waves

1996 ◽  
Vol 111 (12) ◽  
pp. 1429-1431 ◽  
Author(s):  
A. Sachs ◽  
J. H. Lee
2020 ◽  
Vol 34 (07) ◽  
pp. 2050045 ◽  
Author(s):  
Naila Nasreen ◽  
Aly R. Seadawy ◽  
Dianchen Lu

The modified Kawahara equation also called Korteweg-de Vries (KdV) equation of fifth-order arises in shallow water wave and capillary gravity water waves. This study is based on the generalized Riccati equation mapping and modified the F-expansion methods. Several types of solitons such as Bright soliton, Dark-lump soliton, combined bright dark solitary waves, have been derived for the modified Kawahara equation. The obtained solutions have significant applications in applied physics and engineering. Moreover, stability of the problem is presented after being examined through linear stability analysis that justify that all solutions are stable. We also present some solution graphically in 3D and 2D that gives easy understanding about physical explanation of the modified Kawahara equation. The calculated work and achieved outcomes depict the power of the present methods. Furthermore, we can solve various other nonlinear problems with the help of simple and effective techniques.


1997 ◽  
Vol 330 ◽  
pp. 215-232 ◽  
Author(s):  
T.-S. YANG ◽  
T. R. AKYLAS

Symme tric gravity–capillary solitary waves with decaying oscillatory tails are known to bifurcate from infinitesimal periodic waves at the minimum value of the phase speed where the group velocity is equal to the phase speed. In the small-amplitude limit, these solitary waves may be interpreted as envelope solitons with stationary crests and are described by the nonlinear Schrödinger (NLS) equation to leading order. In line with this interpretation, it would appear that one may also co nstruct asymmetric solitary waves by shifting the carrier oscillations relative to the envelope of a symmetric solitary wave. This possibility is examined here on the basis of the fifth-order Korteweg–de Vries (KdV) equation, a model for g ravity–capillary waves on water of finite depth when the Bond number is close to 1/3. Using techniques of exponential asymptotics beyond all orders of the NLS theory, it is shown that asymmetric solitary waves of the form suggested by the NLS theory in fact are not possible. On the other hand, an infinity of symmetric and asymmetric solitary-wave solution families comprising two or more NLS solitary wavepackets bifurcate at finite values of the amplitude parameter. The asymptotic results are consistent with numerical solutions of the fifth-order KdV equation. Moreover, the asymptotic theory suggests that such multi-packet gravity–capillary solitary waves also exist in the full water-wave problem near the minimum of t he phase speed.


2003 ◽  
Vol 58 (9-10) ◽  
pp. 520-528
Author(s):  
Woo-Pyo Hong

We find new analytic solitary-wave solutions, having a nonzero background at infinity, of the general fifth-order shallow water wave models using the hyperbolic function ansatz method. We study the dynamical properties of the solutions in the combined form of a bright and a dark solitary-wave by using numerical simulations. It is shown that the solitary-waves can be stable or marginally stable, depending on the coefficients of the model.We study the interaction dynamics by using the combined solitary-waves as the initial profiles to show the formation of sech2-type solitary-waves in the presence of a strong nonlinear dispersion term. - PACS: 03.40.Kf, 02.30.Jr, 47.20.Ky, 52.35.Mw


2004 ◽  
Vol 59 (4-5) ◽  
pp. 257-265
Author(s):  
Woo-Pyo Hong

New analytic sech2-type traveling solitary-wave solutions, satisfying zero background at infinity, of a general fifth-order shallow water-wave model are found and compared with previously obtained non-zero background solutions. The allowed coefficient regions for the solitary-wave solutions are classified by requiring the wave number and angular frequency to be real. Detailed numerical simulations are performed to demonstrate the stability of the solitary-waves and to show the soliton-like behavior of two interacting solitary-waves. For a large nonlinear term we show the formation of a bounded state of two solitary-waves, called bion, which travels as a single coherent structure. - PACS numbers: 03.40.Kf, 02.30.Jr, 47.20.Ky, 52.35.Mw


1987 ◽  
Vol 178 ◽  
pp. 31-52 ◽  
Author(s):  
W. K. Melville ◽  
Karl R. Helfrich

The evolution of weakly-nonlinear two-layer flow over topography is considered. The governing equations are formulated to consider the effects of quadratic and cubic nonlinearity in the transcritical regime of the internal mode. In the absence of cubic nonlinearity an inhomogeneous Korteweg-de Vries equation describes the interfacial displacement. Numerical solutions of this equation exhibit undular bores or sequences of Boussinesq solitary waves upstream in a transcritical regime. For sufficiently large supercritical Froude numbers, a locally steady flow is attained over the topography. In that regime in which both quadratic and cubic nonlinearity are comparable, the evolution of the interface is described by an inhomogeneous extended Kortewegde Vries (EKdV) equation. This equation displays undular bores upstream in a subcritical regime, but monotonic bores in a transcritical regime. The monotonic bores are solitary wave solutions of the corresponding homogeneous EKdV equation. Again, locally steady flow is attained for sufficiently large supercritical Froude numbers. The predictions of the numerical solutions are compared with laboratory experiments which show good agreement with the solutions of the forced EKdV equation for some range of parameters. It is shown that a recent result of Miles (1986), which predicts an unsteady transcritical regime for single-layer flows, may readily be extended to two-layer flows (described by the forced KdV equation) and is in agreement with the results presented here.Numerical experiments exploiting the symmetry of the homogeneous EKdV equation show that solitary waves of fixed amplitude but arbitrary length may be generated in systems described by the inhomogeneous EKdV equation.


Sign in / Sign up

Export Citation Format

Share Document