water wave problem
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 12)

H-INDEX

26
(FIVE YEARS 1)

Author(s):  
Sergei A. Nazarov ◽  
Jari Taskinen

AbstractWe consider the linear water-wave problem in a periodic channel $$\Pi ^h \subset {{\mathbb {R}}}^3$$ Π h ⊂ R 3 , which is shallow except for a periodic array of deep potholes in it. Motivated by applications to surface wave propagation phenomena, we study the band-gap structure of the essential spectrum in the linear water-wave system, which includes the spectral Steklov boundary condition posed on the free water surface. We apply methods of asymptotic analysis, where the most involved step is the construction and analysis of an appropriate boundary layer in a neighborhood of the joint of the potholes with the thin part of the channel. Consequently, the existence of a spectral gap for small enough h is proven.


Author(s):  
Tien Truong ◽  
Erik Wahlén ◽  
Miles H. Wheeler

AbstractThe Whitham equation is a nonlocal shallow water-wave model which combines the quadratic nonlinearity of the KdV equation with the linear dispersion of the full water wave problem. Whitham conjectured the existence of a highest, cusped, traveling-wave solution, and his conjecture was recently verified in the periodic case by Ehrnström and Wahlén. In the present paper we prove it for solitary waves. Like in the periodic case, the proof is based on global bifurcation theory but with several new challenges. In particular, the small-amplitude limit is singular and cannot be handled using regular bifurcation theory. Instead we use an approach based on a nonlocal version of the center manifold theorem. In the large-amplitude theory a new challenge is a possible loss of compactness, which we rule out using qualitative properties of the equation. The highest wave is found as a limit point of the global bifurcation curve.


Author(s):  
Biswajit Basu ◽  
Calin I. Martin

AbstractWe are concerned here with an analysis of the nonlinear irrotational gravity water wave problem with a free surface over a water flow bounded below by a flat bed. We employ a new formulation involving an expression (called flow force) which contains pressure terms, thus having the potential to handle intricate surface dynamic boundary conditions. The proposed formulation neither requires the graph assumption of the free surface nor does require the absence of stagnation points. By way of this alternative approach we prove the existence of a local curve of solutions to the water wave problem with fixed flow force and more relaxed assumptions.


2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Calin I. Martin

AbstractWe present some explicit solutions (given in Eulerian coordinates) to the three-dimensional nonlinear water wave problem. The velocity field of some of the solutions exhibits a non-constant vorticity vector. An added bonus of the solutions we find is the possibility of incorporating a variable (in time and space) surface pressure which has a radial structure. A special type of radial structure of the surface pressure (of exponential type) is one of the features displayed by hurricanes, cf. Overland (Earle, Malahoff (eds) Overland in ocean wave climate, Plenum Pub. Corp., New York, 1979).


Water Waves ◽  
2021 ◽  
Author(s):  
M. D. Groves

AbstractIn the applied mathematics literature solitary gravity–capillary water waves are modelled by approximating the standard governing equations for water waves by a Korteweg-de Vries equation (for strong surface tension) or a nonlinear Schrödinger equation (for weak surface tension). These formal arguments have been justified by sophisticated techniques such as spatial dynamics and centre-manifold reduction methods on the one hand and variational methods on the other. This article presents a complete, self-contained account of an alternative, simpler approach in which one works directly with the Zakharov–Craig–Sulem formulation of the water-wave problem and uses only rudimentary fixed-point arguments and Fourier analysis.


Author(s):  
M. D. Groves ◽  
J. Horn

This paper considers steady surface waves ‘riding’ a Beltrami flow (a three-dimensional flow with parallel velocity and vorticity fields). It is demonstrated that the hydrodynamic problem can be formulated as two equations for two scalar functions of the horizontal spatial coordinates, namely the elevation η of the free surface and the potential Φ defining the gradient part (in the sense of the Hodge–Weyl decomposition) of the horizontal component of the tangential fluid velocity there. These equations are written in terms of a non-local operator H ( η ) mapping Φ to the normal fluid velocity at the free surface, and are shown to arise from a variational principle. In the irrotational limit, the equations reduce to the Zakharov–Craig–Sulem formulation of the classical three-dimensional steady water-wave problem, while H ( η ) reduces to the familiar Dirichlet–Neumann operator.


2019 ◽  
Vol 30 (2) ◽  
pp. 1804-1835 ◽  
Author(s):  
Eleonora Cinti ◽  
Pietro Miraglio ◽  
Enrico Valdinoci

Sign in / Sign up

Export Citation Format

Share Document