On asymmetric gravity–capillary solitary waves

1997 ◽  
Vol 330 ◽  
pp. 215-232 ◽  
Author(s):  
T.-S. YANG ◽  
T. R. AKYLAS

Symme tric gravity–capillary solitary waves with decaying oscillatory tails are known to bifurcate from infinitesimal periodic waves at the minimum value of the phase speed where the group velocity is equal to the phase speed. In the small-amplitude limit, these solitary waves may be interpreted as envelope solitons with stationary crests and are described by the nonlinear Schrödinger (NLS) equation to leading order. In line with this interpretation, it would appear that one may also co nstruct asymmetric solitary waves by shifting the carrier oscillations relative to the envelope of a symmetric solitary wave. This possibility is examined here on the basis of the fifth-order Korteweg–de Vries (KdV) equation, a model for g ravity–capillary waves on water of finite depth when the Bond number is close to 1/3. Using techniques of exponential asymptotics beyond all orders of the NLS theory, it is shown that asymmetric solitary waves of the form suggested by the NLS theory in fact are not possible. On the other hand, an infinity of symmetric and asymmetric solitary-wave solution families comprising two or more NLS solitary wavepackets bifurcate at finite values of the amplitude parameter. The asymptotic results are consistent with numerical solutions of the fifth-order KdV equation. Moreover, the asymptotic theory suggests that such multi-packet gravity–capillary solitary waves also exist in the full water-wave problem near the minimum of t he phase speed.

1987 ◽  
Vol 178 ◽  
pp. 31-52 ◽  
Author(s):  
W. K. Melville ◽  
Karl R. Helfrich

The evolution of weakly-nonlinear two-layer flow over topography is considered. The governing equations are formulated to consider the effects of quadratic and cubic nonlinearity in the transcritical regime of the internal mode. In the absence of cubic nonlinearity an inhomogeneous Korteweg-de Vries equation describes the interfacial displacement. Numerical solutions of this equation exhibit undular bores or sequences of Boussinesq solitary waves upstream in a transcritical regime. For sufficiently large supercritical Froude numbers, a locally steady flow is attained over the topography. In that regime in which both quadratic and cubic nonlinearity are comparable, the evolution of the interface is described by an inhomogeneous extended Kortewegde Vries (EKdV) equation. This equation displays undular bores upstream in a subcritical regime, but monotonic bores in a transcritical regime. The monotonic bores are solitary wave solutions of the corresponding homogeneous EKdV equation. Again, locally steady flow is attained for sufficiently large supercritical Froude numbers. The predictions of the numerical solutions are compared with laboratory experiments which show good agreement with the solutions of the forced EKdV equation for some range of parameters. It is shown that a recent result of Miles (1986), which predicts an unsteady transcritical regime for single-layer flows, may readily be extended to two-layer flows (described by the forced KdV equation) and is in agreement with the results presented here.Numerical experiments exploiting the symmetry of the homogeneous EKdV equation show that solitary waves of fixed amplitude but arbitrary length may be generated in systems described by the inhomogeneous EKdV equation.


2009 ◽  
Vol 629 ◽  
pp. 73-85 ◽  
Author(s):  
WOOYOUNG CHOI ◽  
RICARDO BARROS ◽  
TAE-CHANG JO

The strongly nonlinear long-wave model for large amplitude internal waves in a two-layer system is regularized to eliminate shear instability due to the wave-induced velocity jump across the interface. The model is written in terms of the horizontal velocities evaluated at the top and bottom boundaries instead of the depth-averaged velocities, and it is shown through local stability analysis that internal solitary waves are locally stable to perturbations of arbitrary wavelengths if the wave amplitudes are smaller than a critical value. For a wide range of depth and density ratios pertinent to oceanic conditions, the critical wave amplitude is close to the maximum wave amplitude and the regularized model is therefore expected to be applicable to the strongly nonlinear regime. The regularized model is solved numerically using a finite-difference method and its numerical solutions support the results of our linear stability analysis. It is also shown that the solitary wave solution of the regularized model, found numerically using a time-dependent numerical model, is close to the solitary wave solution of the original model, confirming that the two models are asymptotically equivalent.


2018 ◽  
Vol 29 (06) ◽  
pp. 1850043 ◽  
Author(s):  
Ali Başhan ◽  
N. Murat Yağmurlu ◽  
Yusuf Uçar ◽  
Alaattin Esen

In the present paper, a novel perspective fundamentally focused on the differential quadrature method using modified cubic B-spline basis functions are going to be applied for obtaining the numerical solutions of the complex modified Korteweg–de Vries (cmKdV) equation. In order to test the effectiveness and efficiency of the present approach, three test problems, that is single solitary wave, interaction of two solitary waves and interaction of three solitary waves will be handled. Furthermore, the maximum error norm [Formula: see text] will be calculated for single solitary wave solutions to measure the efficiency and the accuracy of the present approach. Meanwhile, the three lowest conservation quantities will be calculated and also used to test the efficiency of the method. In addition to these test tools, relative changes of the invariants will be calculated and presented. In the end of these processes, those newly obtained numerical results will be compared with those of some of the published papers. As a conclusion, it can be said that the present approach is an effective and efficient one for solving the cmKdV equation and can also be used for numerical solutions of other problems.


2019 ◽  
Vol 871 ◽  
pp. 1028-1043
Author(s):  
M. Abid ◽  
C. Kharif ◽  
H.-C. Hsu ◽  
Y.-Y. Chen

The bifurcation of two-dimensional gravity–capillary waves into solitary waves when the phase velocity and group velocity are nearly equal is investigated in the presence of constant vorticity. We found that gravity–capillary solitary waves with decaying oscillatory tails exist in deep water in the presence of vorticity. Furthermore we found that the presence of vorticity influences strongly (i) the solitary wave properties and (ii) the growth rate of unstable transverse perturbations. The growth rate and bandwidth instability are given numerically and analytically as a function of the vorticity.


2009 ◽  
Vol 75 (4) ◽  
pp. 455-474 ◽  
Author(s):  
ANIMESH DAS ◽  
ANUP BANDYOPADHYAY

AbstractA Korteweg–de Vries (KdV) equation is derived here, that describes the nonlinear behaviour of long-wavelength weakly nonlinear dust acoustic waves propagating in an arbitrary direction in a plasma consisting of static negatively charged dust grains, non-thermal ions and isothermal electrons. It is found that the rarefactive or compressive nature of the dust acoustic solitary wave solution of the KdV equation does not depend on the dust temperature if σdc < 0 or σdc > σd*, where σdc is a function of β1, α and μ only, and σd*(<1) is the upper limit (upper bound) of σd. This β1 is the non-thermal parameter associated with the non-thermal velocity distribution of ions, α is the ratio of the average temperature of the non-thermal ions to that of the isothermal electrons, μ is the ratio of the unperturbed number density of isothermal electrons to that of the non-thermal ions, Zdσd is the ratio of the average temperature of the dust particles to that of the ions and Zd is the number of electrons residing on the dust grain surface. The KdV equation describes the rarefactive or the compressive dust acoustic solitary waves according to whether σdc < 0 or σdc > σd*. When 0 ≤ σdc ≤ σd*, the KdV equation describes the rarefactive or the compressive dust acoustic solitary waves according to whether σd > σdc or σd < σdc. If σd takes the value σdc with 0 ≤ σdc ≤ σd*, the coefficient of the nonlinear term of the KdV equation vanishes and, for this case, the nonlinear evolution equation of the dust acoustic waves is derived, which is a modified KdV (MKdV) equation. A theoretical investigation of the nature (rarefactive or compressive) of the dust acoustic solitary wave solutions of the evolution equations (KdV and MKdV) is presented with respect to the non-thermal parameter β1. For any given values of α and μ, it is found that the value of σdc completely defines the nature of the dust acoustic solitary waves except for a small portion of the entire range of the non-thermal parameter β1.


Sign in / Sign up

Export Citation Format

Share Document