Exact equations of state for the ideal quantum gases

1969 ◽  
Vol 1 (14) ◽  
pp. 677-681 ◽  
Author(s):  
M. M. Nieto
2020 ◽  
Vol 35 (13) ◽  
pp. 2050100
Author(s):  
Ping Zhang ◽  
Tong Liu

In this paper, based on the heat kernel technique, we calculate equations of state and thermodynamic quantities for ideal quantum gases in confined space with external potential. Concretely, we provide expressions for equations of state and thermodynamic quantities by means of heat kernel coefficients for ideal quantum gases. Especially, using an analytic continuation treatment, we discuss the application of the heat kernel technique to Fermi gases in which the expansion diverges when the fugacity [Formula: see text]. In order to calculate the modification of heat kernel coefficients caused by external potentials, we suggest an approach for calculating the expansion of the global heat kernel of the operator [Formula: see text] based on an approximate method of the calculation of spectrum in quantum mechanics. We discuss the properties of quantum gases under the condition of weak and complete degeneration, respectively. Moreover, we give an expansion of the one-loop effective action in D-dimensional space.


1970 ◽  
Vol 11 (4) ◽  
pp. 1346-1354 ◽  
Author(s):  
Michael Martin Nieto

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 536
Author(s):  
Lingen Chen ◽  
Zewei Meng ◽  
Yanlin Ge ◽  
Feng Wu

An irreversible combined Carnot cycle model using ideal quantum gases as a working medium was studied by using finite-time thermodynamics. The combined cycle consisted of two Carnot sub-cycles in a cascade mode. Considering thermal resistance, internal irreversibility, and heat leakage losses, the power output and thermal efficiency of the irreversible combined Carnot cycle were derived by utilizing the quantum gas state equation. The temperature effect of the working medium on power output and thermal efficiency is analyzed by numerical method, the optimal relationship between power output and thermal efficiency is solved by the Euler-Lagrange equation, and the effects of different working mediums on the optimal power and thermal efficiency performance are also focused. The results show that there is a set of working medium temperatures that makes the power output of the combined cycle be maximum. When there is no heat leakage loss in the combined cycle, all the characteristic curves of optimal power versus thermal efficiency are parabolic-like ones, and the internal irreversibility makes both power output and efficiency decrease. When there is heat leakage loss in the combined cycle, all the characteristic curves of optimal power versus thermal efficiency are loop-shaped ones, and the heat leakage loss only affects the thermal efficiency of the combined Carnot cycle. Comparing the power output of combined heat engines with four types of working mediums, the two-stage combined Carnot cycle using ideal Fermi-Bose gas as working medium obtains the highest power output.


Sign in / Sign up

Export Citation Format

Share Document