Chemical potential for the interacting classical gas and the ideal quantum gas obeying a generalized exclusion principle

2012 ◽  
Vol 33 (3) ◽  
pp. 709-722 ◽  
Author(s):  
F J Sevilla ◽  
L Olivares-Quiroz
2009 ◽  
Vol 23 (20n21) ◽  
pp. 4121-4128 ◽  
Author(s):  
M. GRETHER ◽  
M. DE LLANO ◽  
M. HOWARD LEE

A physical interpretation is given to a curious "hump" that develops in the chemical potential as a function of absolute temperature in an ideal Fermi gas for any spatial dimensionality d < 2, integer or not, in contrast with the more familiar monotonic decrease for all d ≥ 2. The hump height increases without limit as d decreases to zero. The divergence at d = 0 is shown to be a clear manifestation of the Pauli Exclusion Principle whereby two spinless fermions cannot sit on top of each other in configuration space. The hump itself is thus an obvious precursor of this manifestation, otherwise well understood in momentum space. It also constitutes an "ideal quantum dot" when d = 0.


Author(s):  
Jaw-Yen Yang ◽  
Chih-Yuan Yan ◽  
Manuel Diaz ◽  
Juan-Chen Huang ◽  
Zhihui Li ◽  
...  

The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al . 2012 Proc. R. Soc. A 468 , 1799–1823 ( doi:10.1098/rspa.2011.0673 )) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi–Dirac or Bose–Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas.


Author(s):  
Jaw-Yen Yang ◽  
Yu-Hsin Shi

A novel kinetic beam scheme for the ideal quantum gas is presented for the computation of quantum gas dynamical flows. The quantum Boltzmann equation approach is adopted and the local thermodynamic equilibrium quantum distribution is assumed. Both Bose–Einstein and Fermi–Dirac gases are considered. Formulae for one spatial dimension is first derived and the resulting beam scheme is tested for shock tube flows. Implementation of high-order methods is also outlined. We only consider the system in the normal phase consisting of particles in excited states and both the classical limit and the nearly degenerate limit are computed. The flow structures can all be accurately captured by the present beam scheme. Formulations for multiple spatial dimensions are also included.


Author(s):  
Hajo Leschke ◽  
Alexander V. Sobolev ◽  
Wolfgang Spitzer

AbstractWe consider the ideal Fermi gas of indistinguishable particles without spin but with electric charge, confined to a Euclidean plane $${{\mathbb {R}}}^2$$ R 2 perpendicular to an external constant magnetic field of strength $$B>0$$ B > 0 . We assume this (infinite) quantum gas to be in thermal equilibrium at zero temperature, that is, in its ground state with chemical potential $$\mu \ge B$$ μ ≥ B (in suitable physical units). For this (pure) state we define its local entropy $$S(\Lambda )$$ S ( Λ ) associated with a bounded (sub)region $$\Lambda \subset {{\mathbb {R}}}^2$$ Λ ⊂ R 2 as the von Neumann entropy of the (mixed) local substate obtained by reducing the infinite-area ground state to this region $$\Lambda $$ Λ of finite area $$|\Lambda |$$ | Λ | . In this setting we prove that the leading asymptotic growth of $$S(L\Lambda )$$ S ( L Λ ) , as the dimensionless scaling parameter $$L>0$$ L > 0 tends to infinity, has the form $$L\sqrt{B}|\partial \Lambda |$$ L B | ∂ Λ | up to a precisely given (positive multiplicative) coefficient which is independent of $$\Lambda $$ Λ and dependent on B and $$\mu $$ μ only through the integer part of $$(\mu /B-1)/2$$ ( μ / B - 1 ) / 2 . Here we have assumed the boundary curve $$\partial \Lambda $$ ∂ Λ of $$\Lambda $$ Λ to be sufficiently smooth which, in particular, ensures that its arc length $$|\partial \Lambda |$$ | ∂ Λ | is well-defined. This result is in agreement with a so-called area-law scaling (for two spatial dimensions). It contrasts the zero-field case $$B=0$$ B = 0 , where an additional logarithmic factor $$\ln (L)$$ ln ( L ) is known to be present. We also have a similar result, with a slightly more explicit coefficient, for the simpler situation where the underlying single-particle Hamiltonian, known as the Landau Hamiltonian, is restricted from its natural Hilbert space $$\text{ L}^2({{\mathbb {R}}}^2)$$ L 2 ( R 2 ) to the eigenspace of a single but arbitrary Landau level. Both results extend to the whole one-parameter family of quantum Rényi entropies. As opposed to the case $$B=0$$ B = 0 , the corresponding asymptotic coefficients depend on the Rényi index in a non-trivial way.


Author(s):  
Ragnar Ekholm ◽  
Leonard D. Kohn ◽  
Seymour H. Wollman
Keyword(s):  

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guruprasad Kadam ◽  
Swapnali Pawar

We study the equation of state (EoS) of hot and dense hadron gas by incorporating the excluded volume corrections into the ideal hadron resonance gas (HRG) model. The total hadron mass spectrum of the model is the sum of the discrete mass spectrum consisting of all the experimentally known hadrons and the exponentially rising continuous Hagedorn states. We confront the EoS of the model with lattice quantum chromodynamics (LQCD) results at finite baryon chemical potential. We find that this modified HRG model reproduces the LQCD results up to T=160 MeV at zero as well as finite baryon chemical potential. We further estimate the shear viscosity within the ambit of this model in the context of heavy-ion collision experiments.


Sign in / Sign up

Export Citation Format

Share Document